Nutmeg and SPICE: Models and data for biomolecular machine learning

Peter Eastman, Benjamin P. Pritchard, John D. Chodera, Thomas E. Markland
Journal of Chemical Theory and Computation 20:8583, 2024.
[DOI] [preprint]

We present a significant expansion of the SPICE dataset, a large-scale quantum chemical dataset for training machine learning potentials, and show how it can be used to build extremely accurate machine learning potentials.

NNP/MM: Fast molecular dynamics simulations with machine learning potentials and molecular mechanics

Galvelis R, Varela-Rial A, Doerr S, Fino R, Eastman P, Markland TE,  Chodera JD, and de Fabritiis G
Journal of Chemical Information and Modeling 63:5701, 2023 [DOI] [arXiv]

We demonstrate that a new generation of quantum machine learning (QML) potentials based on neural networks---which can achieve quantum chemical accuracy at a fraction of the cost---can be implemented efficiently in the OpenMM molecular dynamics simulation engine as part of hybrid machine learning / molecular mechanics (ML/MM) potentials that promise to deliver superior accuracy for modeling protein-ligand interactions.

Spatial attention kinetic network with E(n) equivariance

Yuanqing Wang and John D. Chodera
preprint: [arXiv] [code]

This work descibes Spatial Attention Kinetic Networks (SAKE), a new E(n)-equivariant architecture that uses spatial attention, enabling the construction of extremely performant but still accurate machine learning potentials, as well as flows capable of prediction dynamics.

Teaching free energy calculations to learn from experimental data

Marcus Wieder, Josh Fass, and John Chodera
[bioRxiv] [code] [data]

We show, for the first time, how alchemical free energy calculations can be used to not only compute free energy differences between small molecules involving covalent bond rearrangements in systems treated entirely with quantum machine learning potentials, but that these calculations have the capacity to learn to efficiently generalize from conditioning on experimental free energy data.

Fitting quantum machine learning potentials to experimental free energy data: Predicting tautomer ratios in solution

Marcus Wieder, Josh Fass, and John D. Chodera
Chemical Science, in press [bioRxiv] [code]

We demonstrate, for the first time, how alchemical free energy calculations can performed on systems simulated entirely with quantum machine learning potentials and how these potentials can be retrained on experimental free energies to generalize to new molecules from limited training data. We apply this approach to a difficult problem in small molecule drug discovery: Predicting accurate tautomer ratios in solution.

Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials

Dominic A. Rufa, Hannah E. Bruce Macdonald, Josh Fass, Marcus Wieder, Patrick B. Grinaway, Adrian E. Roitberg, Olexandr Isayev, and John D. Chodera.
Preprint ahead of submission.
[bioRxiv] [GitHub]

In this first use of hybrid machine learning / molecular mechanics (ML/MM) potentials for alchemical free energy calculations, we demonstrate how the improved modeling of intramolecular ligand energetics offered by the quantum machine learning potential ANI-2x can significantly improve the accuracy in predicting kinase inhibitor binding free energy by reducing the error from 0.97~kcal/mol to 0.47~kcal/mol, which could drastically reduce the number of compounds that must be synthesized in lead optimization campaigns for minimal additional computational cost.