Overview of the SAMPL6 host-guest binding affinity prediction challenge

Andrea RizziSteven MurkliJohn N. McNeillWei YaoMatthew SullivanMichael K. Gilson, Michael W. Chiu, Lyle IsaacsBruce C. GibbDavid L. Mobley*, John D. Chodera*
* denotes co-corresponding authors
Journal of Computer-Aided Molecular Design special issue on SAMPL6, 32:937, 2018. [DOI] [bioRxiv] [GitHub]

We present an overview of the host-guest systems and participant performance for the SAMPL6 host-guest blind affinity prediction challenges, assessing how well various physical modeling approaches were able to predict ligand binding affinities for simple ligand recognition problems where receptor sampling and protonation state effects are eliminated due to the simplicity of supramolecular hosts. We find that progress is now stagnated likely due to force field limitations.

pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments

Mehtap Işık, Dorothy Levorse, Ariën S. Rustenburg, Ikenna E. Ndukwe, Heather Wang , Xiao Wang , Mikhail Reibarkh , Gary E. Martin , Alexey A. Makarov , David L. Mobley, Timothy Rhodes*, John D. Chodera*.
* co-corresponding authors
Journal of Computer-Aided Molecular Design special issue on SAMPL6 32:1117, 2018.
[DOI] [PDF] [bioRxiv] [Supplementary Tables and Figures] [Supplementary Data (includes Sirius T3 reports on all measurements)]

The SAMPL5 blind challenge exercises identified neglect of protonation state effects as a major accuracy-limiting factor in physical modeling of biomolecular interactions. In this study, we report the experimental measurements behind a SAMPL6 blind challenges in which we assess the ability of community codes to predict small molecule pKas for small molecule resembling fragments of selective kinase inhibitors.