Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions

Mehtap Işık, Ariën S Rustenburg, Andrea Rizzi, Marilyn R Gunner, David L Mobley, John D Chodera
Journal of Computer-Aided Molecular Design 35:131, 2021
[DOI] [bioRxiv] [GitHub] [manuscript and figure sources]

The SAMPL6 pKa challenge assessed the ability of the computational chemistry community to predict macroscopic and microscopic pKas for a set of druglike molecules resembling kinase inhibitors. This paper reports on the overall performance and lessons learned, including the surprising finding that many tools predict reasonably accurate macroscopic pKas corresponding to the wrong microscopic protonation sites.

Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge

Mehtap Işık, Teresa Danielle Bergazin, Thomas Fox,  Andrea Rizzi, John D. Chodera, and David L. Mobley.
Journal of Computer Aided Molecular Design, 34:335, 2020. [DOI] [PDF] [bioRxiv] [GitHub]

We report the performance assessment of the 91 methods that were submitted to the SAMPL6 blind challenge for predicting octanol-water partition coefficient (logP) measurements. The average RMSE of the most accurate five MM-based, QM-based, empirical, and mixed approach methods based on RMSE were 0.92±0.13, 0.48±0.06, 0.47±0.05, and 0.50±0.06, respectively.

The SAMPL6 SAMPLing challenge: Assessing the reliability and efficiency of binding free energy calculations

Andrea Rizzi, Travis Jensen, David R. Slochower, Matteo Aldeghi, Vytautas Gapsys, Dimitris Ntekoumes, Stefano Bosisio, Michail Papadourakis, Niel M. Henriksen, Bert L. de Groot, Zoe Cournia, Alex Dickson, Julien Michel, Michael K. Gilson, Michael R. Shirts, David L. Mobley, and John D. Chodera
Journal of Computer Aided Molecular Design 34:601, 2020. [DOI] [PDF] [bioRxiv] [GitHub]

To assess the relative efficiencies of alchemical binding free energy calculations, the SAMPL6 SAMPLing challenge asked participants to submit predictions as a function of computer effort for the same force field and charge model. Surprisingly, we found that most molecular simulation codes cannot agree on the binding free energy was, even for the same force field.

Octanol-water partition coefficient measurements for the SAMPL6 Blind Prediction Challenge

sampl6-part2-logP.png

Mehtap Işık, Dorothy Levorse, David L. Mobley, Timothy Rhodes, and John D. Chodera.
Journal of Computer Aided Molecular Design
34:405, 2020. [DOI] [bioRxiv] [data] [GitHub]

We describe the design and data collection (and associated challenges) for the SAMPL6 part II logP octanol-water blind prediction challenge, where the goal was to benchmark the accuracy of force fields for druglike molecules (here, molecules resembling kinase inhibitors).

Overview of the SAMPL6 host-guest binding affinity prediction challenge

Andrea RizziSteven MurkliJohn N. McNeillWei YaoMatthew SullivanMichael K. Gilson, Michael W. Chiu, Lyle IsaacsBruce C. GibbDavid L. Mobley*, John D. Chodera*
* denotes co-corresponding authors
Journal of Computer-Aided Molecular Design special issue on SAMPL6, 32:937, 2018. [DOI] [bioRxiv] [GitHub]

We present an overview of the host-guest systems and participant performance for the SAMPL6 host-guest blind affinity prediction challenges, assessing how well various physical modeling approaches were able to predict ligand binding affinities for simple ligand recognition problems where receptor sampling and protonation state effects are eliminated due to the simplicity of supramolecular hosts. We find that progress is now stagnated likely due to force field limitations.

pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments

Mehtap Işık, Dorothy Levorse, Ariën S. Rustenburg, Ikenna E. Ndukwe, Heather Wang , Xiao Wang , Mikhail Reibarkh , Gary E. Martin , Alexey A. Makarov , David L. Mobley, Timothy Rhodes*, John D. Chodera*.
* co-corresponding authors
Journal of Computer-Aided Molecular Design special issue on SAMPL6 32:1117, 2018.
[DOI] [PDF] [bioRxiv] [Supplementary Tables and Figures] [Supplementary Data (includes Sirius T3 reports on all measurements)]

The SAMPL5 blind challenge exercises identified neglect of protonation state effects as a major accuracy-limiting factor in physical modeling of biomolecular interactions. In this study, we report the experimental measurements behind a SAMPL6 blind challenges in which we assess the ability of community codes to predict small molecule pKas for small molecule resembling fragments of selective kinase inhibitors.