Quantifying configuration-sampling error in Langevin simulations of complex molecular systems

quantifying-langevin-error.jpg

Josh Fass, David Sivak , Gavin E. Crooks, Kyle A. Beauchamp, Benedict Leimkuhler, and John Chodera.
Entropy 20:318, 2018. [DOI] [PDF] [GitHub] [bioRxiv preprint]

Molecular dynamics simulations necessarily use a finite timestep, which introduces error or bias in the sampled configuration space density that grows rapidly with increasing timestep. For the first time, we show how to compute a natural measure of this error---the KL divergence---in both phase and configuration space for a widely used family of Langevin integrators, and show that VRORV is generally superior for simulation of molecular systems.

OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, Vijay S. Pande. PLoS Computational Biology 13:e1005659, 2017. [DOI] [bioRxiv] [website] [GitHub]

We describe the latest version of OpenMM, a GPU-accelerated framework for high performance molecular simulation applications.

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

Xu Jianing, Pham CG, Albanese SK, Dong Yiyu, Oyama T, Lee CH, Rodrik-Outmezguine V, Yao Z, Han S, Chen D, Parton DL, Chodera JD, Rosen N, Cheng EH, and Hsieh J. Journal of Clinical Investigation 126:3526, 2016. [DOI] [PDF]

In work with the James Hsieh lab at MSKCC, we examine the surprising origin of how different clinically-identified cancer-associated mutations in MTOR activate the kinase through distinct mechanisms.

A simple method for automated equilibration detection in molecular simulations

John D. Chodera.
J. Chem. Theor. Comput. 12:1799, 2016. [DOI[PDF] / code to reproduce manuscript: [GitHub] / preprint: [bioRxiv] / available in pymbar.timeseries

We present a simple scheme for automatically selecting how much initial simulation data to discard to equilibration or burn-in based on maximizing the number of statistically uncorrelated samples in the dataset.

Keywords: molecular simulation; molecular dynamics; burn-in; equilibration; production; analysis

Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

Kyle A. Beauchamp, Julie M. Behr, Ariën S. Rustenburg, Christopher I. Bayly, Kenneth Kroenlein, and John D. Chodera.
J. Phys. Chem. B 119:12912, 2015. [DOI] [PDF] // code: [GitHub] // preprint: [arXiv

Progress in forcefield validation and parameterization has been hindered by the availability of high-quality machine-readable physical property data for small organic molecules. We show how the NIST ThermoML dataset provides a solution to this problem, and demonstrate its utility in benchmarking the GAFF/AM1-BCC small molecule forcefield on neat liquid densities and static dielectric constants to uncover problems in the representation of low-dielectric environments.