Graph nets for partial charge prediction

Yuanqing Wang, Josh Fass, Chaya D. Stern, Kun Luo, and John D. Chodera.
Preprint ahead of publication.
[arXiv] [GitHub]

Graph convolutional and message-passing networks can be a powerful tool for predicting physical properties of small molecules when coupled to a simple physical model that encodes the relevant invariances. Here, we show the ability of graph nets to predict partial atomic charges for use in molecular dynamics simulations and physical docking.

Toward learned chemical perception of force field typing rules

Camila Zanette, Caitlin C. Bannan, Christopher I. Bayly, Josh Fass, Michael K. Gilson, Michael R. Shirts, John Chodera, and David L. Mobley
Journal of Chemical Theory and Computation, 15:402, 2019. [DOI] [ChemRxiv] [GitHub]

We show how machine learning can learn typing rules for molecular mechanics force fields within a Bayesian statistical framework.

Quantifying configuration-sampling error in Langevin simulations of complex molecular systems

quantifying-langevin-error.jpg

Josh Fass, David Sivak , Gavin E. Crooks, Kyle A. Beauchamp, Benedict Leimkuhler, and John Chodera.
Entropy 20:318, 2018. [DOI] [PDF] [GitHub] [bioRxiv preprint]

Molecular dynamics simulations necessarily use a finite timestep, which introduces error or bias in the sampled configuration space density that grows rapidly with increasing timestep. For the first time, we show how to compute a natural measure of this error---the KL divergence---in both phase and configuration space for a widely used family of Langevin integrators, and show that VRORV is generally superior for simulation of molecular systems.

Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes Using Nonequilibrium Candidate Monte Carlo

Samuel Gill, Nathan M. Lim, Patrick Grinaway, Ariën S. Rustenburg, Josh Fass, Gregory Ross, John D. Chodera, and David Mobley.
Journal of Physical Chemistry B 22:5579, 2018. [DOI] [ChemRxiv] [GitHub]

Nonequilibrium candidate Monte Carlo can be used to accelerate the sampling of ligand binding modes by orders of magnitude over instantaneous Monte Carlo.