Binding thermodynamics of host-guest systems with SMIRNOFF99Frosst 1.0.5 from the Open Force Field Initiative

David R. Slochower, Neil M. Hendriksen, Lee-Ping Wang, John D. Chodera, David L. Mobley, and Michael K. Gilson.
Preprint ahead of publication. [preprint] [GitHub]

We assess the accuracy of the SMIRNOFF99Frosst 1.0.5 force field in reproducing host-guest binding thermodynamics in comparison with the GAFF force field, demonstrating how the SMIRNOFF format for compactly specifying force fields provide comparable accuracy with 20x fewer parameters.

Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia

Gerard Minuesa, Steven K Albanese, Arthur Chow, Alexandra Schurer, Sun-Mi Park, Christina Z. Rotsides, James Taggart, Andrea Rizzi, Levi N. Naden, Timothy Chou, Saroj Gourkanti, Daniel Cappel, Maria C Passarelli, Lauren Fairchild, Carolina Adura, Fraser J Glickman, Jessica Schulman, Christopher Famulare, Minal Patel, Joseph K Eibl, Gregory M Ross, Derek S Tan, Christina S Leslie, Thijs Beuming, Yehuda Goldgur, John D Chodera, Michael G Kharas
Nature Communications 10:2691, 2019. [DOI] [bioRxiv] [GitHub] [MSKCC blog post]

We use absolute alchemical free energy calculations to identify the likely interaction site for a small hydrophobic ligand that shows activity against MUSASHI in AML.

The dynamic conformational landscapes of the protein methyltransferase SETD8

SETD8-landscape.png

Rafal P. Wiewiora*, Shi Chen*, Fanwang Meng, Nicolas Babault, Anqi Ma, Wenyu Yu, Kun Qian, Hao Hu, Hua Zou, Junyi Wang, Shijie Fan, Gil Blum, Fabio Pittella-Silva, Kyle A. Beauchamp, Wolfram Tempel, Hualing Jiang, Kaixian Chen, Robert Skene, Y. George Zheng, Peter J. Brown, Jian Jin, John D. Chodera+, and Minkui Luo+.
eLife 8:e45403, 2019. [DOI] [bioRxiv] [GitHub] [OSF] [movies] [MSKCC blog post]
* These authors contributed equally to this work
+ Co-corresponding authors

In this work, we show how targeted X-ray crystallography using covalent inhibitors and depletion of native ligands to reveal structures of low-population hidden conformations can be combined with massively distributed molecular simulation to resolve the functional dynamic landscape of the protein methyltransferase SETD8 in unprecedented atomistic detail. Using an aggregate of six milliseconds of fully atomistic simulation from Folding@home, we use Markov state models to illuminate the conformational dynamics of this important epigenetic protein.

All Folding@home simulation trajectories for this paper are available on the Open Science Framework.

The trajectories generated for this project were used as the source for a unique musical composition 'Metastable' by George Holloway, performed by the Ligeti String Quartet with visual accompaniment from Robert Arbon.

OpenPathSampling: A Python framework for path sampling simulations. II. Building and customizing path ensembles and sample schemes

David W.H. Swenson, Jan-Hendrik Prinz, Frank Noé, John D. Chodera, Peter G. Bolhuis
Journal of Chemical Theory and Computation 15:837, 2019. [DOI] [bioRxiv] [PDF] [GitHub] [openpathsampling.org]

To make powerful path sampling techniques broadly accessible and efficient, we have produced a new Python framework for easily implementing path sampling strategies (such as transition path and interface sampling) in Python. This second publication describes advanced aspects of the theory and details of how to customize path ensembles.

OpenPathSampling: A Python framework for path sampling simulations. I. Basics

David W.H. Swenson, Jan-Hendrik Prinz, Frank Noé, John D. Chodera, Peter G. Bolhuis
Journal of Chemical Theory and Computation 15:813, 2019 [DOI] [bioRxiv] [PDF] [GitHub] [openpathsampling.org]

To make powerful path sampling techniques broadly accessible and efficient, we have produced a new Python framework for easily implementing path sampling strategies (such as transition path and interface sampling) in Python. This first publication describes some of the theory and capabilities behind the approach.

An open library of human kinase domain constructs for automated bacterial expression

kinome-expression-tree.jpg

Steven K. Albanese*, Daniel L. Parton*, Mehtap Isik**, Lucelenie Rodríguez-Laureano**, Sonya M. Hanson,  Julie M. Behr, Scott Gradia, Chris Jeans, Nicholas M. Levinson, Markus A. Seeliger, and John D. Chodera.
* co-first author; ** co-second author
Biochemistry 57:4675, 2018. [DOI] [PDF] [bioRxiv] [GitHub]
Interactive data browser: [github.io]
Plasmids available via AddGene

Human kinase catalytic domains---the therapeutic target of selective kinase inhibitors used in the treatment of cancer and other diseases---are notoriously difficult and expensive to express in insect or human cells. Here, we utilize the phosphatase co-expression technology developed by Markus Seeliger (now at Stony Brook) to develop a library of human kinase catalytic domains for facile and inexpensive expression in bacteria.

Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations

Kevin Hauser, Christopher Negron, Steven K. Albanese, Soumya Ray, Thomas Steinbrecher, Robert Abel, John D. Chodera, and Lingle Wang.
Communications Biology 1:70, 2018 [DOI] [PDF] [input files and analysis scripts]

In our first collaborative paper with Schrödinger, we present the first comprehensive benchmark assessing the ability for alchemical free energy calculations to predict clinical mutational resistance or susceptibility to targeted kinase inhibitors using the well-studied kinase Abl, the target of therapy for chronic myelogenous leukemia (CML).

Quantifying configuration-sampling error in Langevin simulations of complex molecular systems

quantifying-langevin-error.jpg

Josh Fass, David Sivak , Gavin E. Crooks, Kyle A. Beauchamp, Benedict Leimkuhler, and John Chodera.
Entropy 20:318, 2018. [DOI] [PDF] [GitHub] [bioRxiv preprint]

Molecular dynamics simulations necessarily use a finite timestep, which introduces error or bias in the sampled configuration space density that grows rapidly with increasing timestep. For the first time, we show how to compute a natural measure of this error---the KL divergence---in both phase and configuration space for a widely used family of Langevin integrators, and show that VRORV is generally superior for simulation of molecular systems.

A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation

Emily F. Ruff, Joseph M. Muretta, Andrew Thompson, Eric W. Lake, Soreen Cyphers, Steven K. Albanese, Sonya M. Hanson, Julie M. Behr, David D. Thomas,  John D. Chodera, and Nicholas M. Levinson. 
eLife 7:e32766, 2018. [DOI] [bioRxiv]

We show that, contrary to the canonical belief that activation shifts DFG-out to DFG-in populations, phosphorylation of AurA does not shift DFG-in/out equilibrium but instead remodels the conformational distribution of the DFG-in state.