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Abstract

Markov state models (MSMs) have been widely applied to study the kinetics and

pathways of protein conformational dynamics based on statistical analysis of molecular

dynamics (MD) simulations. These MSMs coarse-grain both configuration space and

time in ways that limit what kinds of observables they can reproduce with high fidelity
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over different spatial and temporal resolutions. Despite their popularity, there is still

limited understanding of which biophysical observables can be computed from these

MSMs in a robust and unbiased manner, and which suffer from the space-time coarse-

graining intrinsic in the MSM model. Most theoretical arguments and practical validity

tests for MSMs rely on long-time equilibrium kinetics, such as the slowest relaxation

timescales and experimentally observable time-correlation functions. Here, we perform

an extensive assessment of the ability of well-validated protein folding MSMs to ac-

curactely reproduce path-based observable such as mean first-passage times (MFPTs)

and transition path mechanisms compared to a direct trajectory analysis. We also

assess a recently proposed class of history-augmented MSMs (haMSMs) that exploit

additional information not accounted for in standard MSMs. We conclude with some

practical guidance on the use of MSMs to study various problems in conformational dy-

namics of biomolecules. In brief, MSMs can accurately reproduce correlation functions

slower than the lag time, but path-based observables can only be reliably reproduced

if the lifetimes of states exceed the lag time, which is a much stricter requirement.

Even in the presence of short-lived states, we find that haMSMs reproduce path-based

observables more reliably.

Introduction

The complexity of biomolecular stochastic dynamics presents significant challenges in ex-

tracting fundamental insight and building predictive models from atomistically-detailed

molecular dynamics simulations. In the modern era of inexpensive graphics processing units

(GPUs) and highly optimized molecular simulation codes capable of exploiting them, it is

now routine to rapidly generate microsecond trajectories on a single GPU.1–7 Ready access to

multiple GPUs now allows research laboratories to generate datasets tens to hundreds of mi-

croseconds in aggregate simulation time,8 or with specialized supercomputers or distributed

computing platforms, produce aggregate datasets over a millisecond in size.9,10 Distilling
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these enormous datasets into simple, mechanistic models capable of making predictions that

can be confirmed experimentally and exploited for biophysical or pharmacological manipu-

lation has been the focus of much of the field over the last decade.11–13

A particularly compelling approach has emerged in the machinery of Markov state mod-

els—discrete-state, discrete- or continuous-time stochastic models that approximate the

stochastic dynamical evolution of biomolecules at equilibrium, coarse-grained in configu-

ration space and time.11–19 The essential ingredients of this model involve defining a set

of conformational states representing regions of conformation space (microstates, defined in

detail below) and a transition matrix that describes the probability of observing the system

in a different state j some lag time τ after initially observing the system in state i. The

availability of easy-to-use software tools for constructing Markov state models from molec-

ular simulations20—especially PyEMMA21,22 and MSMBuilder23–25—have resulted in rapid

uptake and widespread use of this technology;11–13 a Google Scholar search1 indicates over

500 papers were published referencing these models in 2018 alone, and over 3100 in total.

Markov state models (MSMs) approximate the stochastic propagator of the

biomolecular system Despite their name, Markov state models (MSMs) do not assume

the biomolecular dynamics must be truly Markovian once projected onto a discrete confor-

mational state space—it is well-understood that the process of coarse-graining configuration

space destroys the Markovian nature of the underlying stochastic dynamics in the full phase

space of the system. Instead, MSMs aim to approximate the complex stochastic dynamics of

the stochastic propagator or transfer operator of the system in a manner where the approx-

imation error induced can be rigorously bounded by mathematical theory.26–29 Practically,

constructing an MSM from a large quantity of simulation data requires a number of deci-

sions to be made regarding choice of featurization of the molecular coordinates, selection of

a dimensionality reduction scheme, and specification of a clustering strategy used to gen-

erate microstates; we refer to all of these choices as hyperparameters associated with MSM

1Google Scholar search: ’"markov-state-models" molecular dynamics’
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construction.12,13,18 The complexity of hyperparameter selection has driven the development

of software to automate the process of selecting appropriate hyperparameters from large

combinatorial spaces,30 which necessitates the use of a numerical objective function to quan-

tify model quality. By casting the problem of MSM construction in variational form,31,32

the field has largely settled on the use of a quantity such as the variational approach to

Markov processes (VAMP-r) score32 or generalized matrix Raleigh quotient (GMRQ)33 as

an objective to be optimally maximized. To minimize statistical artifacts and penalize over-

fitting, cross-validation is used to select optimal hyperparameters33,34 subject to a fixed

observation interval.35 Once optimal parameters have been selected, an appropriate lag time

τ is selected using the timescales implied by the MSM constructed from different lag times

(implied timescales, ITS).18,36 The model can then be used to describe statistical behavior,

understand mechanisms, or predict properties on longer timescales than this lag time τ .37

Markov state models induce approximation error in computed quantities Coarse-

graining of configuration space into discrete states introduces an approximation error into

any property computed from the resulting MSM.26–29 While this approximation error can be

reduced either by increasing the number of (or optimizing the definitions) of the conforma-

tional microstates, the finite amount of trajectory data available usually means the primary

means of reducing approximation error is to select a lag time τ large enough to incur minimal

approximation error but small enough to ensure the model is capable of describing processes

of interest that occur on timescales longer than τ .18 In the absence of statistical error, some

computed properties will be exquisitely sensitive to this approximation error—for exam-

ple, rate estimates may be highly sensitive to τ , and generally are too high38—while other

properties, such as equilibrium properties, will be insensitive to it.

Despite the popularity of MSMs in extrapolating long-time dynamics from ensembles of

short trajectories, there has not been a comprehensive assessment of the error (bias), sensi-

tivity, and consistency in key observables estimated from MSMs as compared to computing
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these quantities directly from long MD simulations in protein systems. An analysis similar

to ours was carried out for the Ala5 penta-peptide by Buchete and Hummer.16 In particular,

if an MSM is built from a very long MD trajectory, how do the MSM estimates of kinetic

and path observables compare to those directly computed from the MD trajectory? The

D. E. Shaw Research (DESRES) protein folding trajectories reported in Lindorff-Larsen et

al.39 provide an opportunity for this comparison because several of the proteins exhibit > 10

transition events and hence accurate benchmark observables. Although MSMs have previ-

ously been built using the DESRES trajectories,40,41 those studies did not attempt the same

type of quantitative analysis presented here using MSMs validated by modern techniques.

History-augmented Markov state models attempt to resolve issues caused by

coarse-graining Recently proposed ‘non-Markovian’ or history-augmented MSM variants

(haMSMs)2 attempt to overcome some of the challenges ordinary MSMs face in modeling

certain properties of interest,44,45 including mean first-passage times (MFPTs).41–43 The

haMSMs build on prior work for history-tracing of trajectories16,46 and are similar to ’exact

milestoning’.47 These models can be built from the same trajectory data used to construct

an ordinary MSM, but require specification of two (or more) macrostates of interest (e.g.,

folded and unfolded), based upon which kinetic observables will be computed; equilibrium

properties of haMSMs, such as state populations, are identical to those of the corresponding

MSMs. haMSMs condition the transition matrix on the macrostate that has been visited

most recently (if at all) in any given trajectory, and this history information enables more

accurate estimation of non-equilibrium observables related to macrostate transitions, partic-

ularly at short lag times when typical MSMs fail to exhibit truly Markovian behavior. For

example, if every trajectory has visited at least one of the states and sampling is sufficient, a

haMSM is guaranteed to yield the exact MFPT consistent with the time discretization of the

2The haMSMs considered here include history information that is not part of a system’s standard phase-
space description and thus were termed ’non-Markovian’ in prior reports.41–43 However, it should be noted
that these models can formally be written as Markov models with history information encoded as an auxiliary
variable.
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raw trajectory data—regardless of the choice of microstates and using the shortest possible

lag equivalent equivalent to the trajectory frame rate (i.e., setting τ = ∆t, see Table 1).

The bias and accuracy of Markov state models can be assessed by comparison

to long trajectories Given recent developments in the field, this study attempts to fill

a gap in the current literature via careful ‘apples-to-apples’ comparisons of MFPTs, rate

constants, and dominant mechanisms from validated MSMs and history-augmented vari-

ants to the same observables calculated from long MD trajectories for protein (un)folding.

We attempt to carefully control for several key factors: (a) the construction procedure for

macrostates among which rates are computed, to avoid subjective choices as much as possi-

ble; (b) validation of the MSMs and the choice of the lag time—i.e., time discretization of the

models; and (c) the formalism for estimating the rate, focusing on mean-first-passage-time

and time correlation derived rates; (d) quantification of mechanism via a uniform approach

for both MSMs and MD. For every observable, we attempt to account for the statistical

power of the data through appropriate error bars.

Our use of carefully constructed macrostates enables quantification of specific timescales

for transitions of interest, such as folding and unfolding, which contrasts with the more

typical MSM-centric analysis of implied timescales (ITS) to identify slow processes that

correspond to structural relaxation modes of the stochastic dynamics.18,36,37 Although ITS

are mathematically well-motivated, the timescales identified this way may represent slow

but uninteresting (improbable or spectroscopically silent) modes of the dynamics while the

processes of interest may be much faster than the slowest identified timescales. For example,

very slow partial unfolding events in a trajectory ensemble could mask a faster conformational

exchange process of greater interest.

Our findings, on the one hand, confirm much of the promise of MSMs constructed from

sufficient data using modern mathematical validation methods: at sufficient lag times, well-

validated MSMs yield accurate kinetic predictions for the four proteins studied here. On
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the other hand, to achieve this fidelity, MSMs for the proteins considered here must uti-

lize fairly long lag times τ & 100 ns (see below and48) that coarse-grain temporal events

faster than this timescale, which prevents the construction of credible mechanistic models of

folding/unfolding pathways that could be compared head-to-head with mechanistic models

derived directly from MD trajectories. As the transition time of folding events typically oc-

cur on much shorter timescales . 10 ns, an MSM with a τ & 100 ns lag time cannot reliably

describe the statistics of these short events. Previous studies have noted the intrinsic limi-

tation of MSMs for characterizing phenomena below the validated lag time.18,36,49 Another

caution for future studies is the difficulty of obtaining a comparable quantity of trajectory

data as was used in the present MSMs: smaller data sets could confound lag-time validation.

Finally, when conformational states of interest can be defined as in the present systems, the

haMSMs generally perform well even for short lag times and hence can provide accurate

pathways as compared to MD for lag time matching MD time-discretization (τ = ∆t, Table

1).

Theoretical Background

Although no new theoretical results or methods are presented in this report, here we briefly

review essential background. Before describing the key elements of MSMs and haMSMs, we

introduce general features of transition phenomena to assist readers in understanding the

connections between the two approaches and the approximations employed.

We are concerned with a broad class of physical systems whose time evolution is described

by trajectories x(t), where x denotes the set of all coordinates (such as a biomolecule and

its solvent environment). Both equilibrium behavior (static and dynamic properties) and

relaxation from out-of-equilibrium initial conditions could be estimated from a sufficiently

large set of trajectories prepared in an appropriate way. We will consider systems of interest

that evolve under stationary, thermostatted conditions, and obey detailed balance, such that
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a sufficiently long trajectory is guaranteed to reach equilibrium in a very long simulation.

Microstates and macrostates

To construct a standard Markov state model (MSM), the whole of configuration space is

first subdivided into a partition of unity3, in which a a crisp division into regions called

microstates is made. Each microstate is a compact, connected region of configuration space.

We will follow MSM nomenclature in describing as a “microstate” a region small enough so

that configurations within this region behave kinetically in a similar manner (and hence do

not include large internal kinetic barriers between populated regions); the statistical dynam-

ics should not strongly depend on which high-probability configuration within a microstate a

trajectory is initiated from. Microstates are generally constructed from some sort of configu-

rational clustering process of the sampled configurations—here, we use clustering approaches

available in PyEMMA22 as described below. We note that the potential violation of these

assumptions, especially at shorter lag times,41,44,45 is a key motivation for defining haMSMs.

A “macrostate” is a larger region of configuration space expected to embody a kinetically

metastable region, where transitions among microstates within a macrostate should be much

more rapid than transitions among microstates in different macrostates.49 These macrostates

may contain a substantial fraction the equilibrium probability (perhaps peq & 0.1), though

they may also represent kinetically metastable but low-population states of interest. For

convenience, macrostates in the present study will always consist of collections of microstates;

these are constructed using either a hierarchical kinetic clustering scheme described below,

or derived by the eigenvectors of the MSM in a manner that captures kinetically related

microstates.

We note that using dynamical models that obey microscopic detailed balance at the

level of single configurations implies “coarse balance” at equilibrium—i.e., a lack of net flow

between any pair of arbitrary regions in configuration space.52 Hence, given rate constants

3More advanced approaches to MSM construction involve the use of core sets,26,29,50,51 described in more
detail below.
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(transition probabilities per unit time) kij among micro- or macrostates i and j, we have

peqi kij = peqj kji (1)

Figure 1: Illustration of trajectories, transitions, and first-passage times. Both
panels are based on the arbitrary macrostates A and B (enclosed by grey lines) which are
subsets of the configuration space represented by the plane of the page. (a) A single, very
long trajectory exhibiting numerous transitions between macrostates can be decomposed into
an α (red) component which contains all segments currently or most recently in macrostate A
and a β (black) component, defined analogously for B. (b) A full A→B transition extracted
from a long trajectory is characterized by the first-passage time (FPT), defined as the time
elapsed from its first arrival to A (filled circle) until its first arrival at B (arrowhead). The
segment of the trajectory following its last occupancy of A (dashed line) is known variously
as the transition time, the event duration, the barrier-crossing time, or the transition-path
time and will be denoted as tTP .

Table 1: Key timescales pertinent to the present study. Each is defined more precisely
in the main text, and some are depicted in Figure 1.

Name Symbol Brief definition
Observation interval ∆t Time resolution; interval between analyzed MD configurations
Frame interval δt Time between available trajectory frames; minimum ∆t
Mean first-passage time MFPT(∆t) Average total time for transition from initiation—depends on ∆t
True MFPT MFPT(0) Standard MFPT based on infinite time resolution (∆t→ 0)
Transition-path time tTP Event duration from last exit of initial state until target reached
MSM lag time τ Time interval between configurations used to generate MSM
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Trajectories, transitions, and timescales

Trajectories x(t) may be usefully considered in different ways. A single long trajectory can

be imagined which undergoes many transitions between arbitrary macrostates A and B,

as shown in Figure 1(a). This trajectory can be decomposed into two directional compo-

nents,16,53,54 the α subset consisting of segments currently or most recently in macrostate A,

and the β component of segments currently or most recently in B. Roughly speaking, only

the α components contribute to the dynamics/kinetics of the A→ B transition and β to

the B→ A direction, although the two directions are necessarily related because of detailed

balance.55

Below, we discuss the relevant classes of timescales of interest; all timescales and corre-

sponding notation used in this study are briefly summarized in Table 1.

For metastable states, the mean first-passage time can be a useful way to char-

acterize rates Key timescales can be inferred by examining a segment of a long trajectory

as in Figure 1(b). The first-passage time (FPT) for an A→B transition is defined as the

elapsed time from when the trajectory first enters state A to when it first reaches state B, and

analogously for B→ A events. In practical situations, an FPT computed from a simulation

trajectory necessarily will depend on the observation interval ∆t, the time between observed

configurations: as ∆t increases, some first-entry events may be missed due to boundary re-

crossing and hence the FPT may monotonically increase; it cannot decrease.41 The average

of all such FPTs in a given direction is the mean FPT (MFPT) for that direction, and in

cases where states A and B define sufficiently metastable conformational states, the inverse

MFPT quantifies a rate constant52 albeit one which generally is sensitive to macrostate def-

initions as seen below. Because the FPT depends on the observation interval ∆t so too will

the MFPT—i.e., MFPT = MFPT(∆t) and it will monotonically increase because of the

missed events noted above.41

The traditional or mathematical MFPT corresponds to the MFPT(∆t → 0) limit. All
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the trajectory data examined here is stored with a finite interval δt between ‘frames’ or

configurational ’snapshots’, so we will sometimes omit the argument from MFPT(∆t) but

readers should assume the ∆t dependence unless the ∆t → 0 limit is explicitly noted. In

the case of the long trajectories considered here, snapshots were recorded with the interval

∆t =200 ps.

The MFPT is also expected to be sensitive to macrostate definitions in general. Con-

sider the difference between describing a simple single-basin target state via a low or high

iso-energy contour. Trajectories reaching a high-energy contour are much more likely to

‘bounce out’ of the state as compared to those reaching the low-energy contour. Stated

more generally, some state definitions are less likely to suffer from re-crossing artifacts, but

it must be borne in mind that for any given system, there is no guarantee of the existence of

physically well-defined states characterized by fast intra-state dynamics and slow inter-state

transitions. In the absence of such a separation of timescales, it should be noted that a sys-

tem should not be characterized by a few-state kinetic model and estimating MFPTs may

not provide physical insight.56–58

It is useful to understand the unphysical limit ∆t → ∞, or more practically ∆t �

MFPT. In this scenario, frames are separated by a time interval longer than the (average)

time for transitions, so the frames will appear to be a sequence of independent and identically

distributed configurations, at least insofar as macrostate occupancy is concerned. Hence the

probability of a configuration to occupy a given macrostate (A or B) is simply proportional

to the equilibrium probability of the state at every time point, regardless of the previous

configuration. Mathematically, we expect41

MFPT(∆t→∞) ≈ ∆t/peq(X) (2)

for transitions to state X = A or B characterized by equilibrium probability peq(X)—i.e.,

simple linear behavior.
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The transition-event time quantifies the duration of a rare transition Another

timescale of interest is the transition-event time (duration) tTP
59–61 which is defined to

exclude the waiting time in the initial state: as shown in Figure 1(b), for the A→B direction,

tTP is the duration of the final segment of a first-passage trajectory following the last visit

to A, and analogously for the B→ A direction.

Key timescales discussed in this study are briefly summarized in Table 1.

Markov state model essentials

The overarching goal of Markov state modeling is twofold: First, describing the complex

statistical dynamics of a stochastic biomolecular system with a simple discrete-state model

that is both predictive of interesting properties, interpretable, and offers significant benefits

for practitioners who might otherwise find themselves drowning in atomistic detail. Second,

MSMs offer a way to bridge timescales by inferring model parameters from short trajectories

that can then describe long-timescale behavior of the system, ideally offering a way around

the need to directly simulate long-timescale or very rare events. When combined with adap-

tive sampling methods,62,63 MSMs could in principle offer a highly efficient approach to the

study of interesting slow biomolecular processes using only modest computational budgets.

To achieve this, Markov state models aim to approximate the transfer operator of the

underlying stochastic dynamics.26–29 The transfer operator T is defined in terms of its action

on probability densities p(x, t). In other words, if we prepared the system in some initial

ensemble p(x, t), waited a time ∆t, and then observed the ensemble p(x, t+∆t), what would

the resulting ensemble look like? If we wait infinitely long, we reach the unique stationary

distribution peq(x) corresponding to thermodynamic equilibrium.

One way to constrain the complexity of a kinetic model is to construct low-rank ap-

proximations to the transfer operator. While the optimal fixed-rank approximation to the

transfer operator is a linear combination of the eigenfunctions of the transfer operator, we

do not know the eigenfunctions, and are forced to approximate them from the simulation

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.374496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374496
http://creativecommons.org/licenses/by-nc-nd/4.0/


data at hand. The Markov state model approach provides a principled way to construct

these approximations, exploiting the metastability of the MD process. A metastable process

corresponds to an approximately piecewise constant transfer function. Piecewise constant

functions can be approximated by defining a partition on the configuration space into indi-

cator functions (e.g., using clustering), and assigning each indicator function a weight. The

standard MSM workflow11–13,17–19 is to select a featurization, defining an appropriate dis-

tance metric (e.g., using tICA40,64–66), cluster snapshots to define microstates, and compute

a transition probability matrix T(τ) between the resulting microstates, compute eigenvalues

and eigenvectors of this matrix, and determine the earliest lag time τ at which it appears

that the rate constants implied by this model are constant.

Once appropriately constructed, a key component of the Markov state model is the

row-stochastic transition matrix T(τ), the row-stochastic matrix of transition probabilities

among microstates:

Tij(τ) = P{x(t+ τ) ∈ Sj|x(t) ∈ Si} (3)

where Si denotes the region of configuration space belonging to microstate i. These transition

probabilities Tij, in contrast to rate constants kij, refer to the probability that a trajectory

which was in state i at time t will be in state j at time t + τ . As we assume the process

is stationary, this transition probability Tij(τ) depends only on the lag time τ but not the

origin observation time t. We further assume detailed balance with regard to the equilibrium

probability peqi , such that

peqi Tij(τ) = peqj Tji(τ) (4)

Once validated for a lag time τ , the time-dependent dynamics of the system can be
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estimated simply by exponentiating the transition matrix,

pT (nτ) ≈ pT (0) Tn(τ). (5)

To improve the accuracy of such an approximation, we must either increase the resolution

of our discretization in transition regions (increasing statistical noise or variance—as the

transition probabilities between smaller, more rarely sampled partitions are harder to esti-

mate) or increase the lag time τ (limiting our ability to resolve processes faster than the lag

time).26–29

Augmenting Markov models with history information

History-augmented MSMs (haMSMs)41 avoid some of the assumptions of standard MSMs by

separately making use of the α and β directional trajectory ensemble components (Figure 1)

described above. The haMSMs employ history information which is always present in tra-

jectories, but not used in standard MSM construction, when describing properties involving

two conformational states of interest. Hence, a haMSM will exhibit different non-equilibrium

properties compared to a MSM trained from the same data on the same microstates. Op-

erationally, as detailed below, a haMSM is constructed by computing two sets of transition

probabilities Tαij and T βij for the set of microstates by conditioning on α or β trajectory seg-

ments. Although the microstates of a haMSM need not be identical to those of a standard

MSM for a given system, here we always construct MSMs and haMSMs using the same set

of microstates.

The motivating idea for haMSMs can be seen more easily by employing a trajectory-

ensemble perspective illustrated in Figure 2. An equilibrium ensemble of independent tra-

jectories sufficiently long enough to connect states A and B can be decomposed into the

directional α (last in A) and β (last in B) components.16,53–55 As the trajectory ensemble

evolves in time, only the α component contributes to A→B transition behavior—timescales
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Figure 2: The equilibrium trajectory ensemble can decomposed into directional
components that are used separately in an haMSM. The equilibrium ensemble of
trajectories is a collection of independent and uncorrelated trajectories evolving for a very
long time under the fixed conditions of interest. Each trajectory can be categorized according
to the last-state scheme described in Figure 1: α (red) for those most recently in macrostate
A and β (black) for those most recently in B. Hence every microstate (small rectangular cell)
contains a mixture of both α and β trajectories. By definition, only α trajectories participate
in A→B transitions; B→ A transitions involve only β trajectories.

and mechanism—while only β generates B → A transitions. The “history” used in the

haMSMs employed here is simply the α or β label, which potentially allows a more accu-

rate description of a directional process because β trajectories do not participate in A→B

transitions and can be excluded from their analysis, and likewise for the B → A direction.

This concept is closely related to the trajectory-based assignment introduced by Buchete and

Hummer16 and core sets used in transition interface sampling calculations,46 which has been

shown to permit a superior approximation of the slow eigenfunctions of the propagator due

to its ability to implicitly approximate the committor functions between the states A and

B.26,29,50,51

Equilibrium static quantities computed from a haMSM exactly match those of the cor-

responding MSM by construction. In principle, an arbitrary number of macrostates and

corresponding trajectory types (α, β, γ, . . .) could be used to construct a haMSM, but more

states will increase statistical noise given a fixed amount of data. In practice, users are more

likely to investigate multiple two-state haMSMs to minimize statistical error.
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The two-state α/β decomposition of trajectories in turn leads to decomposition of derived

quantities such as equilibrium populations and rates.42 In particular, for any microstate i,

the equilibrium population is divided into the two directional components

peqi = pαi + pβi . (6)

Note that because the equilibrium probabilities are normalized (
∑

i p
eq
i = 1), the sum over

α or β populations separately are not normalized:

p(α) =
∑
i

pαi < 1 and p(β) =
∑
i

pβi < 1 (7)

but they do comprise all trajectories so that p(α) + p(β) = 1.

In a similar decomposition, the transition probability Tij characterizing the overall transi-

tion rate in equilibrium (i.e., of a standard MSM) is also decomposed into a simple weighted

average,

Tij =
pαi T

α
ij + pβi T

β
ij

peqi
, (8)

where T µij is the transition probability based only on the µ = α or β directional component.

The relation (8) guarantees that static equilibrium properties derived from the set of Tij,

such as state populations, will agree between a standard MSM and a haMSM using the same

microstates.

The α/β decomposition is naturally related to the well-known committor analysis in a

simple way.67,68 The committor, which is the splitting probability to reach a given state first

(say, B) before another (A) starting from microstate i, is given exactly by ΠB,i = pβi /p
eq
i .

This follows from a reversibility argument: the next state to be reached is the time-inverse

of the most recent state visited.68

For macrostate observables, the potential value of using the α/β decomposition can be

readily understood for the MFPT. Based on the exact Hill relation41,42,69,70 between the
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MFPT and the (directional) steady-state probability flux into the target state, we have for

the A→B direction

1

MFPTA→B(∆t)
=

1

p(α) ∆t

∑
i/∈B, j∈B

pαi T
α
ij(∆t) , (9)

which is applicable whenever A and B are comprised exactly of sets of microstates. Impor-

tantly, the MFPT depends only on α properties and (9) is valid for arbitrary microstates

regardless of whether they exhibit Markovian properties; likewise it is valid for arbitrary

∆t.42 In other words, the MFPT calculated from a haMSM trained on sufficient, unbiased

trajectories will exactly match the MFPT which would be obtained from running a single

long MD simulation and simply averaging FPT values, for any ∆t and arbitrary states.

The distribution of FPT values generated from the haMSM is not guaranteed to match

MD values, however.43 Implicit in (9) is a requirement for consistency: to obtain the value

MFPT(∆t) from (9), the corresponding transition probabilities T µij must be calculated using

the same time discretization ∆t. For notational simplicity, the ∆t dependence of the MFPT

and Tij will often be suppressed below.

In the realm of mechanism, the α/β decomposition in the haMSM again leads to exact

average behavior, in terms of path fluxes. Specifically, the net flux from microstate i to

j in the α component of the haMSM, pαi T
α
ij − pαj Tαji, will exactly match the corresponding

average α flux obtained from a very long MD simulation, and likewise for the β direction.

Further, combining the α and β components of a haMSM will yield overall detailed balance,

so long as detailed balance holds in the underlying equilibrium MSM. This can be seen

by multiplying (8) by peqi and comparing it to the corresponding index-reversed (i ↔ j)

expression. However, haMSMs do not exhibit what might be called microscopic mechanistic

reversibility. The ratio of probabilities of two individual α trajectories (defined as sequences

of microstates) does not necessarily match the ratio for the reverse, β direction. In contrast,

standard MSMs do exhibit microscopic mechanistic reversibility based on standard detailed-
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balance arguments.71

A haMSM can be used to compute any quantity available from a standard MSM. Some

quantities can be calculated using analytic or recursive relations, such as the MFPT via (9).

In general, arbitrary quantities defined on the space of discrete microstates can be computed

for a haMSM using kinetic simulation based on the Tαij and T βij transition probabilities so

long as the trajectory identity as α or β is tracked.

Estimating transition probabilities in a haMSM

The history-labeled transition probabilities T µij are a simple generalization of (3) and defined

as

T µij(τ) = P{x(t+ τ) ∈ Sj|x(t) ∈ Si, L(t) = µ}, (10)

where the new element is the label operator, L(t) = α or β, which restricts consideration to

one of the two trajectory subsets corresponding to the last macrostate visited. The estimation

of T µij from unbiased MD trajectories typically is obtained from counting transitions

T̂ µij = cµij/c
µ
i , (11)

where cµij is the number of transitions observed (with label µ) from the microstate i to j at

a given lag time τ and cµi =
∑

j c
µ
ij. For convenience and in order to simplify the notation

we are not showing explicitly the dependence of the transition probabilities and/or counts

cµij on τ .

In practical cases, only some transitions or trajectory segments can be traced back to

a macrostate to yield the label µ = α or β. Trajectories insufficiently long to permit such

labeling still can be fit into the haMSM formalism by generating a history label probabilis-

tically, consistent with a Markov process. (Other strategies are possible, but we do not
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consider them here.) The likelihood of a label µ of a transition initiated at the microstate

i is pµi [recall (6)], and can be approximated through a Markov model in the absence of

sufficient history. In concrete terms, if one imagines generating a very long discrete-state

trajectory based on the Markovian matrix Tij, then for every i → j transition, the most

recent macrostate can be traced back from the history of this trajectory; more simply, the

pµi values could be computed directly from such a trajectory.

Thus, when traceback to a macrostate is not always possible, the haMSM transition

probabilities are approximated by72

T̂ µij =

∑
k w

µ
ij(k)∑

j

∑
k w

µ
ij(k)

, where wµij(k) =

 1 when label µ is known

pµi otherwise (Markovian estimate)
(12)

where the index k indicates summation over every instance of the i→ j transition. In effect,

each unlabeled transition is assigned fractionally to class α or β depending on pµi . When all

transitions are associated with a history label, (12) reduces to (11), as expected.

To obtain the pµi values analytically, the transition probabilities T̂ µij can be integrated in a

single 2N × 2N row-stochastic matrix K, where N is the number of microstates. Then pµ ≡

(pα1 , p
β
1 , p

α
2 , p

β
2 , . . . , p

α
N , p

β
N)T is the solution of KTpµ = pµ.41–43 The Markovian approximation

simply equates T̂αij =
ˆ
T βij = cij/ci, with the latter being unlabeled counts. In practice,

we build K two times. First, we use the Markovian approximation as noted: although K

encodes the same model as T from (3) in this case, the Markovian estimation of {pµi } is

straightforward from K. Then we obtain the final K—i.e., the haMSM–following (12).

Related prior work

The analysis approach most closely related to haMSMs is the “core set MSM,” which in turn

was motivated by the milestoning sampling strategy.73 Core set MSMs were introduced by

Buchete and Hummer16 and analyzed in mathematical detail by Schütte et al.50 Instead of re-

quiring a full partition of the state space, core set MSMs require only some disjoint core-sets,
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ideally placed in the “cores” (kinetically central regions of high probability) of metastable

sets of the dynamics. Trajectories are then “colored” according to which core they have most

recently visited. In Ref.,50 the authors derive maximum likelihood and Bayesian estimators

for the phenomenological rates (and for the finite-sampling error), present interpretations of

the method in terms of Galerkin approximation, and note that the method does not require

to choose a lag-time. They also note that the approximation quality of core set MSMs de-

pends crucially on both the choice of core sets, and characteristics of the original dynamics.

There has also been work on defining core sets automatically, using metastability-based,74

and density-based75 criteria, as well as further refinements to the concept of minimum dwell

times required to constitute a core set visit.76

Markov state models can also be estimated using a longer finite history. In,77 the

authors propose a test for Markovianity at a particular lag-time by comparing the esti-

mated transition probabilities of a first-order Markov process, p(x(t|x(t − τ)), with the

predictions of second-order, p(xt|x(t − τ),x(t − 2τ)), or higher-order Markov processes,

p(xt|x(t − τ),x(t − 2τ), · · · ,x(t − Nτ)). Note that finite-order Markov processes can be

reduced to first-order Markov processes on a suitably expanded state space.

The principle of retaining history information is also an implicit basis for a number of

path-sampling approaches. Notably, the “transition interface sampling” method introduced

the most-recent-state construction46 employed in haMSMs and in related work.53,54 The

same concept is also embodied in the weighted ensemble method42,68,78,79 and forward flux

sampling.80

Systems, macrostates, and MSM formulation

Systems considered in this study

All analyses in this study were performed on the long equilibrium molecular dynamics tra-

jectories of four miniproteins from the D. E. Shaw Research (DESRES) protein folding
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trajectories reported in Lindorff-Larsen et al.:39 chignolin, Trp-cage, NTL9, and villin (Fig-

ure 3). One trajectory was removed from the NTL9 dataset due to inconsistencies with the

other three trajectories (see SI for details, which also discusses differing topologies within

this dataset).

Trp-cage 
208μs
(20 Residues)

Villin 
125μs
(35 Residues)

Chignolin
106μs
(10 Residues)

NTL9
2562μs
(39 Residues)

Figure 3: Protein systems considered in this study. All trajectory data comes from
the D. E. Shaw Research (DESRES) protein folding trajectories reported in Lindorff-Larsen
et al.39 The length of the MD simulation and the number of residues is specified in each
case.

MSM construction and validation

Numerous hyperparameters must be selected in the construction of Markov state models.30

Key to the present study is the careful use of automatic hyperparameter selection selection30

using an objective function derived from the variational approach to MSM construction31–33

that uses cross-validation to ensure an optimal tradeoff between bias and variance.34 While

prior studies40,41,81 examined the fidelity with which MSMs reproduced the long-time be-

havior of some of these proteins, critically, they did not employ the most reliable validation

procedures and hence the accuracy of those comparisons to MD studies may not be fully
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reliable.

Featurization and hyperparameter selection To select the optimal MSM hyperparam-

eters, we used variational scoring31–33 combined with cross-validation34 to evaluate model

quality, consistent with modern MSM construction practice.34 To evaluate a large set of

hyperparameters, reduced datasets subsampled to 10 ns/frame (50 ns/frame for NTL9)

intervals were used for computational feasibility, except for chignolin, which remained at

0.2 ns/frame intervals due to its small size. The datasets were featurized with all minimal

residue–residue distances (calculated as the closest distance between the heavy atoms of

two residues separated in sequence by at least two neighboring residues). For consistency

in interpretation and computational feasibility, this featurization choice was made without

variational scoring. All parameters downstream of featurization (tICA lag time, number

of tICs retained, tICA mapping, and the number of microstates) were then scored using a

100 ns MSM lag time; see Table 3 and the SI for further details and scoring results. We

also explored using a much shorter MSM lag time of 10 ns, hypothesizing this could better

optimize the reproduction of kinetics at short lag times, SI figures show the comparison of

the results at the two scoring lag times.

MSM scoring using cross-validation We used a 50:50 shuffle-split cross-validation

scheme to find the optimal set of hyperparameters while avoiding overfitting. In this scheme,

2 µs long fragments of the trajectories (i.e., the original fragments in which the datasets are

provided by DESRES) are randomly split into training and test sets of approximately equal

sizes. tICA40,64 and k-means clustering were then conducted by fitting the model to the

training set only, then transforming the test set according to this model. Scoring was based

on the sum of squared-eigenvalues of the transition matrix (VAMP-2 score32), as this partic-

ular score is physically interpretable as ’kinetic content’. Figure 12 shows the results of the

scoring. Further details of the scoring procedure are discussed in the SI. To construct the

discrete microstate trajectories used in this work, the modeling process was then repeated
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with full datasets (with no additional striding, i.e. at 0.2 ns/frame intervals and with no

train-test splitting) using the top scoring parameters for the repeated tICA and k-means

calculations.

Determination of useful MSM lag times The convergence of the implied timescales

in the final models was assessed by constructing Bayesian Markov state models (BMSMs) at

increasing lag times (Figure 4). The following Markovian lag times at which the timescales

first converged were identified: chignolin: 150 ns; villin: 100 ns; Trp-cage: 100 ns; NTL9:

200 ns. Chapman-Kolmogorov (CK) tests18 were conducted on the BMSMs to validate

the self-consistency of the models at the Markovian lag times (Figure 14). CK tests were

performed using two macrostates identified by PCCA++,82 except for villin where three

macrostates were used (see SI for details).

Macrostate construction and the transition path time

We employed two different macrostate construction schemes, based on different clustering

approaches, to ensure that the results of our study are not sensitive to the chosen process.

As our primary method, the MSMs were coarse-grained into two (“folded” and “un-

folded”) macrostates, except for villin for which three macrostates (“folded”, “unfolded” and

“misfolded”—see SI for details) were necessary, using the fuzzy spectral clustering method

PCCA++.82 The identities of the macrostates were assigned based on visual inspection of

chosen segments of the trajectories in PyMOL.83 The coarse-graining resulted in macrostates

with the following equilibrium populations: chignolin: 79.4% folded, 20.6% unfolded; villin:

32.5% folded, 60.9% unfolded, 6.6% misfolded; Trp-cage: 19.0% folded, 81.0% unfolded;

NTL9: 91.5% folded, 8.5% unfolded.

In order to study the mechanisms of folding, we sought to define an intermediate region,

leaving more core-like folded and unfolded states. As PCCA++ produces fuzzy metastable

membership of microstates into macrostates, we defined the intermediate region to consist of
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Figure 4: Implied timescales as a function of lag time for the Markov state models
of all systems. All implied timescales of the BMSMs calculated at a range of lag times are
shown: the maximum likelihood estimates (MLEs) as solid lines, the means of 100 samples
as dashed lines, and the 95% confidence intervals of the means as shaded regions, estimated
using Bayesian MSM methods implemented in PyEMMA. Note that the left panels use
linear scale for implied timescales, while the right panels use logarithmic scale. The gray
area signifies the region where timescales become equal to or smaller than the lag time and
can no longer be resolved. Vertical green lines mark the lag times chosen for the MSMs used
here, at which the timescales converge (chignolin: 150 ns, villin: 100 ns, Trp-cage: 100 ns,
NTL9: 200 ns), while horizontal green lines mark the MLEs of the slowest timescales of
MSMs computed at those lag times.

the 10% of all microstates with macrostate memberships closest to 50%, with the remaining

90% of microstates assigned to the folded/unfolded/misfolded macrostate to which they had

the highest membership.
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In the second macrostate construction procedure, we employed a hierarchical kinetic

clustering procedure—a variant of a published process84 which in turn is based on an earlier

proposal.49 Specifically, the clustering procedure is based on the commute time tij between

every pair (i, j) of microstates at the highest time resolution, i.e., tij = MFPTi→j(δt) +

MFPTi→j(δt), where δt is the time interval between available trajectory frames (minimum

possible lag-time). Since direct estimation of tij from MD data would be very noisy, we use

Markovian MFPTs computed at that short lag-time. Our goal here is not to build the best

model for computing tij but a quick recipe for the construction of the macrostates. See SI

for further details of the procedure.

Software and code availability PyEMMA 2.5.4 and 2.5.622 was used for all MSM cal-

culations. All code used for this analysis is available via a Github repository at https:

//github.com/choderalab/msm-mfpt.

Results

Transition-path time

The transition-path time tTP (Figure 1 and Section ) provides a critical filter for under-

standing the domain of applicability of MSMs. Once macrostates have been defined, we

can evaluate the transition-path time tTP—i.e., the duration of a transition event, from its

last departure from the initial (e.g., unfolded) macrostate until its first arrival to the target

(e.g., folded) state. Table 2 shows transition path times from MD simulation for the proteins

typically are less than 10 ns, with NTL9 about an order of magnitude longer. The table

values combine both folding and unfolding events because of the microscopic reversibility of

MD trajectories.

Because the validated MSM lag times generally are longer than the tTP values, the MSMs

should not be used to probe intra-transition characteristics. That is, the validated lag time
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represents the finest time resolution for which the MSM can address relevant questions.

Table 2: Transition event durations tTP (ns) from long MD simulations.

chignolin Trp-cage villin NTL9
median 0.6 0.4 0.4 21.2
average 1.6 8.5 2.7 108.7

std. dev. 3.2 32.3 7.7 256.0

Observable: MFPT analysis

The MFPT (Section ) is a key characteristic of chemical and physical processes.69,85,86 Al-

though sensitive to both lag time and macrostate definitions as noted above, the MFPT does

quantify a well-defined physical process by construction, in contrast to implied timescales.

This concreteness makes the MFPT an ideal yardstick for comparison among model and

reference data.

Figure 5 shows the comparison of both MSM and haMSM predictions for the MFPT

based on PCCA++ macrostates,82 as compared to reference MD results. Recall that the

MFPT intrinsically depends on the time resolution ∆t which is taken to match the MSM lag

time τ . All the proteins exhibit similar behavior. At short times below the validated MSM

lag values, the MFPT shows strong lag-time sensitivity and MSMs are “faster” than MD;

the haMSMs successfully track the MD behavior even in this regime. In the quasi-plateau

region following the first inflection all the models become consistent with MD. At large times,

after the second inflection, we see the trivial (non-kinetic) asymptotic linear behavior of (2).

The haMSMs track the MD data in all the regimes, even when limited history information

(Section ) is used.

Comparing MSM predictions to MD behavior further validates the relatively long lag

times required for these systems. In every case, the MSMs do not track the MD data until

lag times τ & 100 ns. We note that even for the MD data, the MFPT does not always

reach a true plateau region where it is insensitive to lag time, which reflects a combination
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of the underlying system and the macrostate definitions; it is not a result of the MSM or

haMSM analysis. We also examined how the presence of the plateau regions is affected by

changing the core-likeness of the macrostates (Figure 17). The plateaus sharply disappear

for all systems if highly core-like macrostates are used, while they are largely unaffected for

small sizes of the intermediate regions.

Analogous data based on the kinetically-clustered macrostates (Figure 18) yields similar

results for two of the systems (Trp-cage and NTL9), while for chignolin and villin the MFPTs

are underestimated compared to PCCA++ results at short lag times and are missing the

plateau regions. This suggests macrostates may not be ideally defined in the latter cases via

kinetic clustering.

Observable: Pathways/mechanism

Understanding mechanism is a key goal of molecular dynamics studies. In principle, both

MSMs and haMSMs may be used to model transition mechanisms, but because MSMs

are validated for a particular Markovian lag time, caution must be exercised in analyzing

transitions which may occur on shorter timescales. As shown in Table 2, tTP is typically

. 10 ns for the protein transitions of interest, considerably less than the validated MSM

lag times & 100ns. For the sake of comparison and because lag time sensitivity will be of

considerable interest, MSMs are here considered at a range of lag times, including values

well below the validated lag times.

We analyze mechanism using three approaches that vary in “resolution” but all provide

objective yardsticks for comparing models with one another and against empirical MD data.

(i) The crudest measure simply tracks the fraction of direct transitions, defined to be

those where the microstate-discretized macrostate-to-macrostate transition occurs without

visiting any intermediate microstate; this statistic will depend on the model lag time and

also the size of the intermediate region.

(ii) Second, we employ an analysis based on the configurational distribution of the transi-
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tion path ensemble, as described by Hummer,60 which aggregates transition paths together;

although temporal information is removed, the resulting population profile over intermedi-

ate microstates provides a configurational representation of mechanism. A simple measure

of some of the temporal information missing from the configurational representation is the

average transition path length shown in the SI (Figure 19).

(iii) Finally, employing time-sequential conformational information, we use the recently

proposed “pathway histogram analysis of trajectories” (PHAT) method87 which classifies

MD or model trajectories into pathway classes, yielding a path histogram which is a mech-

anistic signature of the transition. Classification in the PHAT approach is performed using

the “fundamental sequence” (FS) of each transition trajectory; the FS, roughly, is the “back-

bone” of the transition path with loops and back-and-forth steps removed, expressed as a

sequence of microstates traversed.87 For all three analyses, we combine events in both direc-

tions to obtain better statistics exploiting the symmetry of forward and reverse mechanisms

under equilibrium conditions.55

Configurational analysis of mechanism is embodied in Figs. 6 and 7. The haMSM ac-

curately reproduces the fraction of direct pathways seen in MD for all the proteins and all

sizes of the intermediate region. MSMs do not reproduce the MD well in general, except for

some instances at very short lag times, which are well below the validated lag times τ & 100

ns. Likewise, the haMSMs exhibit relatively low error by comparison to MD for p(x|TPind),

which is the configurational distribution over discrete microstates for the transition-path en-

semble; the “ind” subscript indicates direct pathways probed in Figure 7 have been removed

from the analysis. For p(x|TPind), the MSMs perform best at short lag times well below the

validated values.

Figure 8 shows the configurational analysis for a set number of intermediate microstates

(10% of all states) and Figure 9 shows the comparison of MSMs and haMSMs with reference

to pathway histogram data generated from MD using the same size of the intermediate.

In both cases, the haMSMs recapitulate the configurational and mechanistic distributions
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found in long MD trajectories, and are largely successful even when only a small amount

of history (1 or 10 ns) is used. The MSMs, however, exhibit irregular agreement with MD

reference results: for most of the systems, no single lag time provides uniform agreement,

while predictions for some of the microstates and for the most probable paths substantially

differ from MD for many lags. The data also suggest that a fairly small number of pathway

classes dominate the ensembles even though the number of intermediate microstates used

for the analysis implies a large number of (mathematically) possible pathways.

Discussion and recommendations

Our study has filled an important gap in the MSM literature by direct and quantitative

comparison of MSMs to the underlying long-time MD trajectories, both in terms of rate-

constants for specific processes and mechanisms of protein folding. Prior studies typically

examined implied timescales (ITS), which can be difficult to assign to specific structural

transitions of interest, and did not characterize mechanisms in a way that enabled direct,

quantitative comparison of MSMs with MD data. Furthermore, the MSMs employed in this

study are among the most carefully validated in the literature, not only because of the size

of the trajectory data sets39 used, but also due to the application of recently developed strict

validation criteria.33,34

Most centrally, we find for the folding and unfolding processes examined here, that:

(i) validated MSMs provide reliable kinetics estimates at suitable lag times, contrary to

what was implied by a recent analysis examining only the shortest lag times,72 (ii) the

lag times necessary for validated MSMs are too long to permit the detailed examination

of transition events or to make mechanistic inferences, consistent with previous theoretical

arguments,18,36,49 and (iii) augmenting MSMs using history information72 enables accurate

kinetic analysis at short lag times and also yields mechanistic descriptions in quantitative

agreement with MD.
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The capabilities and limitations of MSMs stem directly from their mathematical basis.

The validated MSM is constructed to match the eigenspectrum and time-correlation func-

tions but not path-like properties relying on states with lifetimes shorter than the lag-time.

The first-hit characteristic of the MFPT, which in a sense is path-dependent, likely disrupts

agreement with MSMs at short lag times, whereas at longer lags the MFPT presumably be-

haves more like a correlation time in harmony with the MSM’s eigenspectrum. The haMSM’s

construction explicitly accounts for the macrostate-to-macrostate directionality and appears

to provide a reasonable approximation to path-like quantities, including MFPTs at short lag

times.

Our findings raise several issues. First, in practical terms, what lag times should users

expect will be needed in other systems and how does that affect the strategy for collecting MD

data for MSM construction? We examined a series of relatively small, single-domain proteins

based on effectively exhaustive MD sampling.39 In more complex systems, our data suggest

lag times exceeding 100 ns should be expected, and accordingly continuous trajectories on

the µs scale would be advisable. We advise users to examine ITS behavior as a function

of lag time on both log and linear scales, because the logarithmic scale can be deceptive in

suggesting a plateau when ITS values may still be increasing.

Our finding that the validated lag times for MSMs exceed typical transition path times

(event durations) is cautionary. Users primarily interested in deriving mechanistic insights

may want to pursue tools beyond standard MSMs. Mechanistic conclusions in older MSMs

based on less complete validation may warrant re-examination.

For history-augmented MSMs, the present study suggests that including . 50 ns of

trajectory history is sufficient for estimating kinetic and mechanistic observables, pointing

to the value of continuous trajectories exceeding 100 ns, consistent with prior work on first-

passage times.72 Once a sufficient amount of history is included in the haMSM analysis,

arbitrarily small time-discretizations (lag times) can be examined reliably for both kinetics

and mechanism.
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What accounts for the success of haMSMs in predicting mechanism quantitatively, de-

spite that they are exact only for the mean FPT and approximate for other non-equilibrium

observables? The haMSM transition matrix is built from transition counts in the subset

of A-to-B directed (α) trajectories, and so is constructed to mimic the “forward” tendency

embodied in that ensemble. To the extent that the distribution of mechanisms is predicted

quantitatively, this means that the average transition probabilities in the α ensemble are not

significantly different from the detailed tendencies which would be embodied, for instance,

in a higher-degree Markov model conditioned on an extended sequence of prior states. Some

physical intuition can come from a toy example where there are two transition pathways sep-

arated from each other by an energy barrier—i.e., a ridge. So long as none of the microstates

(which are coarse-grained regions in configuration space) straddle the ridge, we would not

expect a significant difference between the haMSM paths and the true paths. Any microstate

straddling the ridge could, however, lead to unphysical crossover between the pathways; evi-

dently, this latter occurrence is infrequent in the systems and models examined here. Finally,

note that haMSMs exhibited similar success in reproducing the distribution of FPTs, which

also is only predicted approximately.43

On the whole, we hope these findings provide guidance for users of MSMs and haMSMs,

though we acknowledge that additional similar comparisons for different types of processes,

such as conformational changes and ligand binding, as well as more complex systems, would

be of great value for the community.
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ical theory and computation 2012, 8, 2223–2238.

(22) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; Hoffmann, M.;
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(66) Noé, F.; Banisch, R.; Clementi, C. Journal of chemical theory and computation 2016,

12, 5620–5630.

(67) Bolhuis, P. G.; Lechner, W. Journal of Statistical Physics 2011, 145, 841–859.

(68) Costaouec, R.; Feng, H.; Izaguirre, J.; Darve, E. Discrete and Continuous Dynamical

Systems 2013, 171–181.

(69) Hill, T. L. Free Energy Transduction and Biochemical Cycle Kinetics ; Dover, 2004.

(70) Bhatt, D.; Zhang, B. W.; Zuckerman, D. M. Journal of Chemical Physics 2010, 133,

14110.

(71) Crooks, G. E. Journal of Statistical Physics 1998, 90, 1481–1487.
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Supporting Information

MSM scoring MSMs at a lag time of 100 ns were constructed using discrete microstate

trajectories from the training set and scored on the test set trajectories. For comparison, we

also performed scoring at a short MSM lag time of 10 ns, hypothesizing this could better

optimize the reproduction of kinetics at short lag times for comparison with haMSMs. We

used the 100 ns lag time top models for all analysis, and compared the results to the 10 ns

lag time models in SI figures.

We used a 50:50 shuffle-split cross-validation scheme to find the optimal set of hyperpa-

rameters while avoiding overfitting. In this scheme, 2 µs long fragments of the trajectories
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(i.e., the original fragments in which the datasets are provided by DESRES) are randomly

split into training and test sets of approximately equal sizes. To obtain standard deviations

indicative of out-of-sample model performance, this shuffle-split model evaluation procedure

was repeated 10 times with different random divisions of the dataset into training and test

sets. Scoring was based on the sum of squared-eigenvalues of the transition matrix (VAMP-2

score32), as this particular score is physically interpretable as ’kinetic content’.

To choose the best number of top eigenvalues to score the models with, we initially

performed scoring separately at each number of top eigenvalues between 2 and 50. We then

chose the number of eigenvalues for which the score of the top scoring model was closest

to 50% of the number of eigenvalues (i.e., the highest possible score), in order to maximize

the signal from the true dynamical processes and increase the resolution of the scores, while

minimizing the noise from spurious eigenvalues (Figure 10, Figure 11 shows the analogical

results for the 10 ns scoring lag time). Hence 3 (4 at 10 ns) top eigenvalues were used for

chignolin, 5 (12 at 10 ns) eigenvalues for villin, 6 (17 at 10 ns) eigenvalues for Trp-cage, and

5 (38 at 10 ns) eigenvalues for NTL9. To evaluate a large set of hyperparameters, reduced

datasets subsampled to 10 ns/frame (for NTL9: 10 ns/frame at 10 ns scoring lag time,

increased to 50 ns/frame at 100 ns scoring lag time) were used for computational feasibility,

except for chignolin, which remained at 0.2 ns/frame intervals due to its small size. The

datasets were featurized with all minimal residue–residue distances (calculated as the closest

distance between the heavy atoms of two residues separated in sequence by at least two

neighboring residues). For consistency in interpretation and computational feasibility, this

featurization choice was made without variational scoring. The datasets were projected into

a kinetically relevant space using tICA,40,64 at lag time 10 ns (50 ns for NTL9 at the 100 ns

MSM scoring lag due to higher subsampling; for chignolin lag times 1 ns and 5 ns were also

possible due to no subsampling), with either kinetic65 or commute66 mapping, retaining the

following numbers of tICs (maximum number of which depends on the number of features

and hence size of the protein): 2 or the number of tICs corresponding to 95% of total kinetic

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.374496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374496
http://creativecommons.org/licenses/by-nc-nd/4.0/


variance/content (”95%”) for chignolin; 2, 10, 50, 100, 150, or 95% for Trp-cage; 2, 10,

50, 100, 300, 500, or 95% for villin and NTL9. Each of the tICA outputs was discretized

using k-means clustering into 50, 100, 300, 500, 800, or 1000 microstate clusters (except for

chignolin, where 200, 400, 600, or 900 microstate clusters were also tried for better scoring

resolution, due to the smaller number of features and hence number of tICs retained). Table 3

summarizes all hyperparameter options assessed.

Figure 12 shows the results of the scoring at the 100 ns lag time, and Figure 13 at the

10 ns lag time. Model scores are reported below as means with standard deviations over

10 shuffle-splits. As there were no statistically significant differences between the scores for

chignolin at the 100 ns lag time, we used the top model scored at 10 ns for all analyses. We

also note the top scoring models for villin were identical at both lag times.

The following top scoring models were selected using the 100 ns scoring lag time: chig-

nolin: all models statistically the same; villin: commute tICA mapping, 10 ns tICA lag

time, 10 tICs, 100 microstates, score 2.43 (5 eigenvalues, SD: 0.31); Trp-cage: kinetic tICA

mapping, 10 ns tICA lag time, 50 tICs, 100 microstates, score 3.13 (SD: 0.24, 6 eigenvalues);

NTL9: commute tICA mapping, 50 ns tICA lag time, 50 tICs, 200 microstates, score 2.34

(SD: 0.26, 5 eigenvalues).

The following top scoring models were selected using the 10 ns scoring lag time: chignolin:

kinetic tICA mapping, 1 ns tICA lag time, 15 tICs (95% kinetic variance), 100 microstates,

score 2.05 (4 eigenvalues, SD: 0.05); villin: commute tICA mapping, 10 ns tICA lag time,

10 tICs, 100 microstates, score 5.96 (12 eigenvalues, SD: 0.58); Trp-cage: commute tICA

mapping, 10 ns tICA lag time, 100 tICs, 50 microstates, score 8.51 (SD: 0.42, 17 eigenvalues);

NTL9: commute tICA mapping, 10 ns tICA lag time, 10 tICs, 200 microstates, score 19.11

(SD: 0.89, 38 eigenvalues).

Finally, to construct the discrete microstate trajectories used in this work, the modeling

process was repeated with full datasets (with no additional striding, i.e. at 0.2 ns/frame

intervals and with no train-test splitting) using the top scoring parameters for the repeated
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tICA and k-means calculations.

Coarse-graining into macrostates PCCA++ villin coarse-graining. Our villin

MSM identified a microsecond timescale (∼1.1 µs), which was not present in a previously

published MSM of this dataset,81 likely due to our use of the residue-residue distances fea-

turization combined with tICA, compared to the minRMSD metric in.81 By coarse-graining

the MSM into two macrostates, we identified this longer timescale as corresponding to the

transition between the “folded – unfolded” and “misfolded” macrostates. The “misfolded”

macrostate shows formation of short-lived helicity between residues ASN60 and LEU63 (Fig-

ures 15, 16). The previously81 identified folding timescale of ∼ 400 ns is the second slowest

timescale in our MSM, and a 3 macrostate coarse-graining was necessary to obtain separa-

tion between the “folded” and “unfolded” macrostates. All folding kinetics are considered

only between the “folded” and “unfolded” macrostates, with no regard to the “misfolded”

macrostate.

Defining macrostates based on kinetic clustering. As an alternative coarse-graining

procedure, we use a hierarchical (or progressive) clustering based on a cutoff tcut. If the

round-trip time (tij) between any two states is less that tcut then we merge the states. The

procedure is as follows:

1. Compute MFPT matrix M and add it to MT to obtain the round-trip times {tij}

2. While min({tij}) < tcut:

• Merge the corresponding states

• Recompute {tij} (step 1) for merged states

3. Increase tcut until clustering results in only one macrostate. Plot the highest {tij} vs.

tcut, identify the longest plateau, and take macrostates at tcut in the middle of the

plateau. The following tcut values were identified: 436 ns for chignolin, 277.6 ns for

Trp-cage, 449.2 ns for villin, and 817.6 ns for NTL9.
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Issues with DESRES NTL9 dataset Thermodynamics and kinetics of trajectory

NTL9-2 are inconsistent with the other trajectories. While the folded content of the

other three NTL9 trajectories is ∼90%, in agreement with the MSM results, trajectory

NTL9-2 has only ∼50% folded frames. This can be clearly seen in the RMSD plots of the

’Individual proteins’ section of the SI of39 (NTL9-2 is the 3rd trajectory). The kinetics are

also much faster: using macrostates defined from an MSM computed including NTL9-2, this

trajectory has 185 folded-unfolded transitions, compared to just 7 in trajectory NTL9-3 of

similar length. This is especially pronounced at the beginning of the trajectory—removal

of the first 80 microseconds (mean of the folding and unfolding MFPTs in our converged

MSM) leaves only 18 transitions left, though still many more than just 6 in the same length

of NTL9-3. We removed trajectory NTL9-2 from the dataset analyzed in this paper.

Topology of trajectory NTL9-1 is different from the other trajectories. The dataset

is provided with one NTL9.pdb topology file, as well as .mae files for each trajectory, to use

for loading the topology-less .dcd trajectory files. However, using the NTL9.pdb file with the

NTL9-1 trajectory provides clearly nonsensical results, e.g. by visual inspection in PyMOL83

or lack of MSM convergence if using features defined from this file. Inspection of the .mae

files reveals the arrangement of the hydrogen atoms in the topologies are different between

NTL9-1 (within each residue, except for the first residue, some of whose hydrogens are at

the end of the file) and the other trajectories (at the end of file). Importantly, conversion of

the .mae file for NTL9-1 to a .pdb file with PyMOL83 or Maestro88 FAILS to preserve the

original order of hydrogens, while VMD89 preserves it and was used by us for the conversion.

The results were verified by manual inspection in PyMOL.83
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Table 3: All of the model hyperparameters assessed combinatorially.

FeaturizationNumber of
tICs retained

tICA lag
time

tICA map-
ping

Number of
microstates

MSM
lag
time

Chignolin res.–res.
min. dis-
tances

2, 95% kin.
var./cont.

1 ns, 5 ns,
10 ns

kinetic, com-
mute

50, 100, 200,
300, 400, 500,
600, 700, 800,
900, 1000

10 ns

Villin res.–res.
min. dis-
tances

2, 10, 50, 100,
300, 500, 95%
kin. var./cont.

10 ns kinetic, com-
mute

50, 100, 300,
500, 800, 1000

10 ns

Trp-cage res.–res.
min. dis-
tances

2, 10, 50, 100,
150, 95% kin.
var./cont.

10 ns kinetic, com-
mute

50, 100, 300,
500, 800, 1000

10 ns

NTL9 res.–res.
min. dis-
tances

2, 10, 50, 100,
300, 500, 95%
kin. var./cont.

10 ns kinetic, com-
mute

50, 100, 300,
500, 800, 1000

10 ns
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Figure 5: MFPT estimates compared among MD, MSMs, and haMSMs. The
MFPT for both folding and unfolding is plotted as a function of lag time. Reference MD data
is shown as the 95% confidence interval (green band), which can be compared to validated
MSM data (black lines) and haMSM values with full history (solid blue lines) and partial
history (dashed blue lines). The gray area signifies the region where MFPTs become equal
to or smaller than the lag time and can no longer be resolved. The MD confidence intervals
missing for the final data points of chignolin and villin are due to no more transition events
seen at those very long lag times.
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Figure 6: Simple mechanism comparison of MD, MSMs, and haMSMs using the
fraction of direct folding pathways. For the given number of intermediate microstates,
ensembles of discretized transition trajectories were analyzed to determine the fraction which
directly ‘hopped over’ the intermediate region based on either the MD discretization time
∆t, also used for haMSM modeling, or else the indicated MSM lag time. A greater number
of intermediate microstates indicates relatively smaller macrostates and accounts for the
monotonic decrease of direct transitions.
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Figure 7: Mechanism comparison of MSMs and haMSMs to MD using the config-
urational distributions of transition path ensemble. Each panel plots the summed ab-
solute error, as compared to MD, for intermediate microstate probabilities calculated for the
transition path ensembles, i.e., p(x|TPind), for the given number of intermediate microstates.
Importantly, the “ind” subscript indicates that direct pathways analyzed in Figure 6 were
excluded from the ensembles prior to computation of errors; had they been included, the
MSM errors would be substantially larger.
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Figure 8: Mechanism comparison of MSMs and haMSMs to MD using the config-
urational distributions of transition path ensemble, for 10% intermediate states.
For each protein, the probability distribution is plotted for different states to be on a transi-
tion pathway, i.e., p(x|TPind), Importantly, the “ind” subscript indicates that direct pathways
analyzed in Figure 6 were excluded from the ensembles prior to computation of errors; had
they been included, the MSM errors would be substantially larger. The reference MD values
(green) may be compared with MSM predictions for different lag times (red color scale at
right) and haMSM estimates based on different amounts of history (blue symbols).
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Figure 9: Path-based mechanistic comparison among MSMs, haMSMs, and MD.
For each protein, the probability distribution is plotted for different mechanistic pathways
based on the fundamental sequence (FS) approach.87 The reference MD values (green) may
be compared with MSM predictions for different lag times (red color scale at right) and
haMSM estimates based on different amounts of history (blue symbols). Pathway indices
are ordered based on decreasing probability in the MD reference data set. Only the top 15
paths are included. For the data shown, 10% of states were used as the intermediate to yield
a manageable number of transition paths.

49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.374496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374496
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 10 20 30 40 50
number of eigenvalues

0.0

0.2

0.4

0.6

0.8

to
p 

sc
or

e 
%

 o
f m

ax
.

Chignolin

2 10 20 30 40 50
number of eigenvalues

0.2

0.4

0.6

0.8

to
p 

sc
or

e 
%

 o
f m

ax
.

Villin

2 10 20 30 40 50
number of eigenvalues

0.2

0.4

0.6

0.8

1.0

to
p 

sc
or

e 
%

 o
f m

ax
.

Trp-cage

2 10 20 30 40 50
number of eigenvalues

0.2

0.4

0.6

0.8

1.0

to
p 

sc
or

e 
%

 o
f m

ax
.

NTL9

Figure 10: Selection of the number of top eigenvalues for scoring, at a 100 ns
lag time. Markov state models (MSMs) were VAMP-2 scored separately at each number
of top eigenvalues between 2 and 50 included in the scoring. The ratios of the top scoring
models at each choice of numbers of eigenvalues and that number of eigenvalues (i.e. the
highest possible score) are plotted. For selection of the final model, we chose the number of
eigenvalues for which the ratio was closest to 0.5, marked by the red horizontal line.
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Figure 11: Selection of the number of top eigenvalues for scoring, at a 10 ns lag
time. Markov state models (MSMs) were VAMP-2 scored separately at each number of
top eigenvalues between 2 and 50 included in the scoring. The ratios of the top scoring
models at each choice of numbers of eigenvalues and that number of eigenvalues (i.e. the
highest possible score) are plotted. For selection of the final model, we chose the number of
eigenvalues for which the ratio was closest to 0.5, marked by the red horizontal line.
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Figure 12: VAMP-2 scoring results for optimal hyperparameter choice, at a 100
ns lag time. The distributions of the VAMP-2 scores of ten shuffle-splits of the data for
each individual set of hyperparameters (model) are shown as box-and-whisker plots. Bands
of boxes show the first, second, and third quartiles, while whisker ends represent the lowest
and highest scores still within 1.5 of the interquartile range from the first and third quartiles
respectively. Scores lying outside of that range are shown as diamonds. The models are
denoted as ([tICA mapping], [tICA lag time (in ns)], [number of tICs retained], [number of
microstates]). Test scores are shown in green and training scores in red.
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Figure 13: VAMP-2 scoring results for optimal hyperparameter choice, at a 10
ns lag time. The distributions of the VAMP-2 scores of ten shuffle-splits of the data for
each individual set of hyperparameters (model) are shown as box-and-whisker plots. Bands
of boxes show the first, second, and third quartiles, while whisker ends represent the lowest
and highest scores still within 1.5 of the interquartile range from the first and third quartiles
respectively. Scores lying outside of that range are shown as diamonds. The models are
denoted as ([tICA mapping], [tICA lag time (in ns)], [number of tICs retained], [number of
microstates]). Test scores are shown in green and training scores in red.
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Figure 14: Chapman-Kolmogorov tests of the Bayesian Markov state models con-
structed for each system. The objective of the Chapman-Kolmogorov test is to assess
the kinetic self-consistency of the MSM, i.e., whether the predictions of longer time behavior
made from the BMSM being tested match the estimates made from BMSMs generated at
longer lag times. For each macrostate, probability density is assigned to the BMSM mi-
crostates according to their metastable memberships to the given macrostate and evolution
of the probability in time in the tested BMSM is plotted in blue (”predictions”). At those
same longer lag times new BMSMs are estimated and their probability densities of being in
the given macrostate after one lag time are plotted in black (”estimates”). The shaded re-
gions correspond to the 95% confidence intervals of the mean of the predictions and estimates
(the estimate confidence intervals are very narrow).
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Figure 15: ASN60 - LEU63 minimum distance along the villin trajectory. Short-
lived “misfolded” states can be seen, explaining the appearance of a very long timescale that
does not correspond to folding in the MSM (see the ’PCCA++ villin coarse-graining’ SI
section for details).

Figure 16: Sample frames from the three macrostates of the villin BMSM. From
left to right, cartoon representations of “misfolded”, “folded”, and “unfolded” frames are
shown. ASN60 and LEU63 are also shown in spheres. The presence of the ”misfolded”
states explains the appearance of a very long timescale that does not correspond to folding
in the MSM (see the ’PCCA++ villin coarse-graining’ SI section for details).
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Figure 17: Sensitivity of MFPTs calculated from Markov state models to the
core-likeness of the macrostates. The MFPT for both folding and unfolding calculated
from MSMs is plotted as a function of lag time. The curves are colored by the number of
microstates defined as the intermediate region - the larger the intermediate, the more core-
like the macrostates become. The gray area signifies the region where MFPTs become equal
to or smaller than the lag time and can no longer be resolved.
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Figure 18: Comparison of the MFPT dependence on lag time for macrostates
defined by PCCA++ or agglomerative clustering. The MFPT for both folding and
unfolding is plotted as a function of lag time. Reference MD data is shown as the 95%
confidence interval (green bands for PCCA and red bands for agglom.), which can be com-
pared to validated MSM data (black lines for PCCA and red lines for agglom.) and haMSM
values with full history (solid blue lines for both methods) and partial history (dashed blue
lines for both methods). The PCCA macrostates are defined using a cutoff such that the
resulting intermediate is of the same size as with agglomerative clustering. The gray area
signifies the region where MFPTs become equal to or smaller than the lag time and can
no longer be resolved. The MD confidence intervals missing for some final data points are
due to no more transition events seen at those very long lag times. Two shortest lag time
haMSM data points missing for villin with agglomerative clustering are due to no stationary
solutions found.
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Figure 19: Simple mechanism comparison of MD, MSMs, and haMSMs using the
mean lengths of transition paths. For the given number of intermediate microstates,
ensembles of discretized transition trajectories were analyzed to determine the mean of the
distribution of all transition paths. Differently from the configurational analysis of indirect
paths, we include the direct paths here; the transition paths include the last frame in the
origin macrostate and the first frame in the destination macrostate, i.e. the length of a direct
path is 2 x the lag time.
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Figure 20: Comparison of top models selected at scoring lag times 100 ns (top)
and 10 ns (bottom), for Trp-cage and NTL9: Chapman-Kolmogorov tests of
the Bayesian Markov state models constructed for each system. The objective
of the Chapman-Kolmogorov test is to assess the kinetic self-consistency of the MSM, i.e.,
whether the predictions of longer time behavior made from the BMSM being tested match the
estimates made from BMSMs generated at longer lag times. For each macrostate, probability
density is assigned to the BMSM microstates according to their metastable memberships to
the given macrostate and evolution of the probability in time in the tested BMSM is plotted
in blue (”predictions”). At those same longer lag times new BMSMs are estimated and their
probability densities of being in the given macrostate after one lag time are plotted in black
(”estimates”). The shaded regions correspond to the 95% confidence intervals of the mean
of the predictions and estimates (the estimate confidence intervals are very narrow).

59

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.374496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374496
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 101 102 103 104

Lag time (ns)

10 1

100

101

102

M
FP

T 
(

s)

Trp-cage FOLDING

haMSM (hist=3ns)
haMSM (hist=25ns)
haMSM (full history)
MSM
MD direct
MD conf. int. (95%)

100 101 102 103 104

Lag time (ns)

10 1

100

101

102 Trp-cage UNFOLDING

100 101 102 103 104

Lag time (ns)

10 1

100

101

102

M
FP

T 
(

s)

Trp-cage FOLDING

haMSM (hist=3ns)
haMSM (hist=25ns)
haMSM (full history)
MSM
MD direct
MD conf. int. (95%)

100 101 102 103 104

Lag time (ns)

10 1

100

101

102 Trp-cage UNFOLDING

100 101 102 103 104

Lag time (ns)

10 1

100

101

102

103

M
FP

T 
(

s)

NTL9 FOLDING

haMSM (hist=5ns)
haMSM (hist=25ns)
haMSM (full history)
MSM
MD direct
MD conf. int. (95%)

100 101 102 103 104

Lag time (ns)

10 1

100

101

102

103 NTL9 UNFOLDING

100 101 102 103 104

Lag time (ns)

10 1

100

101

102

103

M
FP

T 
(

s)

NTL9 FOLDING

haMSM (hist=5ns)
haMSM (hist=25ns)
haMSM (full history)
MSM
MD direct
MD conf. int. (95%)

100 101 102 103 104

Lag time (ns)

10 1

100

101

102

103 NTL9 UNFOLDING

Figure 21: Comparison of top models selected at scoring lag times 100 ns (top)
and 10 ns (bottom), for Trp-cage and NTL9: MFPT estimates compared among
MD, MSMs, and haMSMs. The MFPT for both folding and unfolding is plotted as a
function of lag time. Reference MD data is shown as the 95% confidence interval (green
band), which can be compared to validated MSM data (black lines) and haMSM values with
full history (solid blue lines) and partial history (dashed blue lines). The gray area signifies
the region where MFPTs become equal to or smaller than the lag time and can no longer
be resolved. The MD confidence intervals missing for the final data points of chignolin and
villin are due to no more transition events seen at those very long lag times.
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Figure 22: Comparison of top models selected at scoring lag times 100 ns (left side)
and 10 ns (right side), for Trp-cage and NTL9: simple mechanism comparison
of MD, MSMs, and haMSMs using the fraction of direct folding pathways. For
the given number of intermediate microstates, ensembles of discretized transition trajectories
were analyzed to determine the fraction which directly ‘hopped over’ the intermediate region
based on either the MD discretization time ∆t, also used for haMSM modeling, or else the
indicated MSM lag time. A greater number of intermediate microstates indicates relatively
smaller macrostates and accounts for the monotonic decrease of direct transitions. Two
haMSMs data points are missing for NTL9 (10 ns) due to numerical problems.
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Figure 23: Comparison of top models selected at scoring lag times 100 ns (left side)
and 10 ns (right side), for Trp-cage and NTL9: mechanism comparison of MSMs
and haMSMs to MD using the configurational distributions of transition path
ensemble. Each panel plots the summed absolute error, as compared to MD, for interme-
diate microstate probabilities calculated for the transition path ensembles, i.e., p(x|TPind),
for the given number of intermediate microstates. Importantly, the “ind” subscript indicates
that direct pathways analyzed in Figure 6 were excluded from the ensembles prior to com-
putation of errors; had they been included, the MSM errors would be substantially larger.
Two haMSMs data points are missing for NTL9 (10 ns) due to numerical problems.
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