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Discrete-space Markov models are a convenient way of describing the kinetics of biomolecules. The
most common strategies used to validate these models employ statistics from simulation data, such
as the eigenvalue spectrum of the inferred rate matrix, which are often associated with large
uncertainties. Here, we propose a Bayesian approach, which makes it possible to differentiate
between models at a fixed lag time making use of short trajectories. The hierarchical definition of
the models allows one to compare instances with any number of states. We apply a conjugate prior
for reversible Markov chains, which was recently introduced in the statistics literature. The method
is tested in two different systems, a Monte Carlo dynamics simulation of a two-dimensional model
system and molecular dynamics simulations of the terminally blocked alanine dipeptide.
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I. INTRODUCTION

Many molecules of interest in chemistry and medicine,
such as proteins and RNA, are widely believed to have a
hierarchical free energy landscapek3 consisting of many
low-energy wells in high-dimensional space. In a molecular
dynamics (MD) simulation, these regions of conformational
space exhibit metastability,4 which can hinder the sampling
of uncorrelated configurations from the equilibrium distribu-
tion in a computationally viable time. Fortunately, this phe-
nomenon enables approximations that result in discrete or
continuous-time stochastic models of conformational dynam-
ics, which are used to derive kinetic information from MD
simulations shorter than the slowest timescales of the system.

Mori and Zwanzig laid the groundwork for stochastic
modeling of conformational dynamics by applying the pro-
jection operator formalism to equilibrium classical
mechanics.”® Given a partition of conformational space into
discrete states, this method results in a generalized master
equation that exactly describes the evolution of the densities
of each state in a canonical ensemble by the introduction of
a memory function to capture the dependence on the history
of previously visited states. A Markov approximation of this
process, in which the memory is assumed to be infinitely
short, gives rise to a continuous-time random walk with ex-
ponential waiting times from which kinetic rates may be eas-
ily obtained.’ However, the emergence of Markovian behav-
ior in coarse-grained dynamics has only been proven for a
few microscopic models.** Chandler investigated conditions
for the Markov assumption, or more generally, for the phe-
nomenological observation that a chemical reaction between
two states obeys a first-order rate law."” This work was later
generalized to multistate systems.lz’11 It was shown that the
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rate constant of an infrequent transition across an energy
barrier, 7.\, is the time integral of the Mori-Zwanzig
memory function. This function has a singular component at
t=0, whose integral corresponds to the transition state theory
estimate of the rate, while its nonsingular part gives rise to a
transmission coefficient that corrects this estimate. The phe-
nomenological rate law requires a separation of time scales
between the dynamics along the reactive path and on the
degrees of freedom orthogonal to it. This assumption leads to
two expressions for 7. in terms of correlation functions,
including the popular reactive flux formula,'® which is inde-
pendent of the placement of the dividing surface as long as a
separation of time scales exists.

There is a multitude of methods to optimize reactive
paths or coordinates and find rate constants.> ' While this
task is relatively straightforward for systems with two states,
as the number of metastable states increases, the problem of
determining the transition rates between all pairs of states
becomes prohibitively expensive. Transition path sampling
techniques are being developed for computing multiple rate
constants simultaneously,19 but even these methods require
well-defined metastable states. A simpler approach for large
systems is to coarse grain the time domain at a fixed obser-
vation interval or lag time, 7,4, at which the dynamics on the
full, discrete state space become well approximated by a
Markov chain. This would happen if the chosen 7, is greater
than the time it takes to decorrelate within any given state,
but much smaller that the characteristic timescale of a tran-
sition. In this regime, when a simulation starts within a state,
there will be many independent attempts to leave it before a
transition occurs—the system will effectively lose memory
of where it started within the state, which is equivalent to the
Markov condition.

Defining a Markov model is a twofold task, which in-
volves projecting the dynamics onto a discrete partition of
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configurational space and finding the shortest lag time at
which a projected trajectory is well modeled by a Markov
chain. Much effort has been put into algorithms that perform
this task sequentially,zo_27 but their validation methods re-
main largely heuristic. The simplest way to evaluate a model
is to compare the evolution of state populations in a simula-
tion to that predicted by the model.”’ Another validation
technique makes use of rate matrices inferred from the ob-
served transitions at a series of lag times. The eigenvalues of
the rate matrix, which are related to the characteristic time
scales of concerted transitions defined by the corresponding
eigenvectors, should be constant for lag times greater than
the Markovian lag time. This is a consequence of the
Chapman—Kolmogorov equation, which governs Markov
processes28 and is also consistent with Chandler’s reactive
flux theory. Swope et al. ¥ proposed using these implied time
scales to define the Markovian lag time as the smallest lag
time that satisfies this condition. Buchete er al. suggested
projecting the dynamics onto different eigenvectors of an
inferred rate matrix and comparing the decay of the cross-
correlation functions predicted by a master equation model
to that inferred directly from the data.®® Another interesting
approach to model validation uses an entropy function to
measure the information lost when going from a second-
order Markov model to a first-order Markov model.!

All the cited methods rely on statistics of the simulation,
which are often poor, producing large uncertainties. Here, we
propose a subjective or Bayesian approach to model valida-
tion. This approach makes it possible to use all the data
available to evaluate generative models quantitatively. In
particular, we define a hierarchical model that can be used to
select an optimal state decomposition at any fixed lag time.
The method does not confirm the Markov assumption, nor
does it provide an estimate of the error incurred in making it.
However, when used in tandem with the cited heuristics, the
method affords several advantages including the ability to
statistically compare models with different numbers of states.
It will also enable us to identify the most predictive Markov
model among a group of poor models that cannot be vali-
dated with the usual strategies. Such a model would be inapt
for drawing conclusions about the dynamics, but may none-
theless be useful in adaptive sampling methods, which would
guide further refinement of the state definitions or the model
parameters. The thrust of the Bayesian method is discussed
further in the concluding section to clarify the meaning of a
model’s optimality and show how a model could be used to
infer a posteriori distributions of kinetic properties.

Il. BAYESIAN MODEL COMPARISON

We begin by partitioning configurational space into
small cells known as microstates, Z, using the sampled con-
formations as a guide. The configurations within any given
microstate must be so similar that we can safely assume
there are no substantial kinetic barriers between them.
Our data will consist of a sequence of microstates
D={z,,25,...,2,:2; € Z}, sampled from a MD trajectory at a
fixed time interval, here referred to as the lag time. The mi-
crostates are then grouped into larger macrostates, Y, which
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are ideally approximations of the true metastable states of the
system.4 In the chosen lag time, the simulation should
quickly equilibrate within the macrostate to produce an un-
correlated sample from the equilibrium distribution of mi-
crostates belonging to that macrostate. Suppose the model
specifies the microstate-to-macrostate mapping or lumping,
denoted by L:Z—Y, Markovian transition probabilities be-
tween the macrostates 7, and the equilibrium populations of
the microstates within each macrostate, O@={f,:ye Y},
where each 6, is a vector of probabililties that sums to 1. We
denote a model accordingly M={L,T,®}. We presume that
the observed sequence of microstates was generated from the
Markov model thusly: given the system is initially in some
macrostate y,, we choose the next macrostate from the row of
the transition matrix 7 corresponding to macrostate y,. Then,
we choose a microstate from within macrostate y,,; with
probability proportional to its stationary population in y,,,
given by by .-

All the models considered will be built from the same
microstate basis, and we will only be concerned with select-
ing the superior lumping into macrostates, L, so we let ® and
T be random variables to which we assign noninformative
prior distributions. In comparing the probability of two mac-
rostate partitionings L; and L,, we marginalize over mi-
crostate probabilities ® and macrostate transition probabili-
ties T, so as to recover the relative probabilities of the
macrostate partitionings alone. In particular, we will compute
the ratio

P(L,|D) _ P(DIL,) P(L,)
P(L,|D)  P(D|L,) P(L,)’

(1)
where we assume the prior probabilities of the lumpings
equal. By the Bayes theorem, Eq. (1) can be written as

P(L\|D)  [[dTd®P(D|L,,T,®)P(T,8|L,)
P(L,|D)  [fdTd®P(D|L,,T,0®)P(T,0|L,)’

()

This ratio, known as a Bayes factor, is the main instrument of
Bayesian model comparison; it expresses the probability of a
model over another given some finite data, D. Unlike a sim-
pler likelihood ratio, a Bayes factor automatically penalizes
overcomplex models. It may be possible to increase the like-
lihood of the data P(D|M) if we make the model more com-
plex, for example, by increasing the number of macrostates
and the dimensionality of 7. However, when we integrate
this likelihood over a prior distribution on 7 and @, the re-
gions of parameter space of high likelihood are weighted by
lower prior probabilities because they represent a smaller
fraction of this high-dimensional space.”’33

Similar Bayesian frameworks have been used in the past
to estimate the transition maltrix,21’34 as well as for model
comparison.35 The choice of prior distribution for 7 and O is
critical because it expresses our a priori knowledge of these
variables, which can affect the behavior of the method when
there is little data. We will see that certain priors afford
an analytical solution to probabilities of the form P(D|L) in
Eq. (1).

Recall that the sequence of microstates D is produced by
two independent processes—a Markov chain that generates a
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sequence of macrostates, which will be denoted as Dy, and
the selection of a microstate from the stationary distribution
6, within each macrostate visited—so we can factorize the
likelihood inside the integral for P(D|L) to obtain

P(D|L) = f f dTdOP(Dy|T,L)P(D|Dy,0,L)P(T,0)

=deP(DY T,L)P(T)

X fdG)P(D|Dy,®,L)P(®), (3)

where we dropped the trivial dependence of the priors on L.
Both the macrostate trajectory Dy and the selection of mi-
crostates given Dy are sequences of independent multinomial
variables parametrized by the rows of 7 and by ©, respec-
tively. This makes the Dirichlet distribution a natural prior
for the parameters.zl’35 This prior distribution is conjugate to
the multinomial likelihood, which means that posterior dis-
tributions obtained from the Bayes equation retain the func-
tional form of the prior.36 Let Z, be the subset of microstates
corresponding to macrostate y, then the Dirichlet prior on 6,
for example, is defined by the density

Dir(6,;a,) = B; I 6,9, (4)

(ay) z EZ).

where the normalizing constant B(e,) is the multinomial
Beta function and «, is a vector of the same dimension as 0,
that parametrizes the distribution. ’

The conjugate Dirichlet prior gives the two integrals in
Eq. (3) a closed-form solution. Take, for example, the second
integral,

P(D|Dy,L) = f dOP(D|Dy,L,0®)[] Dir(6,;a,). (5

yeY
This can be analytically solved to yield
I‘I(|Zv|)HzEZ F(lel = Z}| + ay(z))
P(D|Dy.L) = [ —7— :
! yeY F(Hl:zi € Zy}| + EzeZya’_v(Z))

where the parallel bars around a set denote its cardinality and
I'(---) is the gamma function. The hyperparameters a, in the
prior for each 6, may be interpreted as a set of pseudocounts.
More precisely, the distribution conveys the belief that the
microstate z € Z, has been chosen a,(z)—1 times a priori.
There has been much discussion on which value of the hy-
perparameter produces an objective or uninformative prior.37
Two common choices are to set all a,(z) uniformly to 1 (no
prior observations) and to 1/2 (the Jeffreys prior, which pre-
serves the distribution under reparametrization38’39). In our
examples, we have chosen the former.

We expect physical systems to satisfy detailed balance in
microscopic as well as coarse-grained dynamics (see Ref. 28
for example). This property of T has been previously en-
forced in Bayesian computations by using an independent
Dirichlet prior for each row of the matrix, as suggested
above, but restricting the joint density P(T) over the revers-
ible matrices.** Detailed balance has also been imposed in

(6)
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Bayesian inference of the rate matrix.”’ These methods re-
quire Markov chain Monte Carlo (MCMC) sampling.*’ Tt
was observed that imposing reversibility could greatly
reduce the uncertainty of off-diagonal elements of the tran-
sition matrix in the posterior distribution, which has impor-
tant consequences in the inference of certain kinetic
observables.** This is due to the fact that transitions from
state i to j give information about the transition rate from j to
i, even if none are directly observed. We also expect this
restriction to have an effect in model comparison, especially
when there is little data, or when the simulations used are far
from equilibrium. Here, we employ a conjugate prior for
reversible Markov chains.*’ The utility of this distribution,
defined strictly over matrices with detailed balance, is that it
provides analytical expressions for normalization constants
which we will make use of here.

lll. A CONJUGATE PRIOR FOR REVERSIBLE
MARKOV CHAINS

There is an equivalence between a reversible Markov
chain and a random walk on an edge-weighted, undirected
graph {Y,E}.* The set of vertices corresponds to the mac-
rostates Y and there is an edge in E for every unordered pair
of macrostates. The random walk proceeds as follows: if we
start at vertex y, at time ¢, the next vertex y,,; is chosen with
probability proportional to the non-negative weight, k{."p)}n}'
The set of normalized edge weights, defined by

ki jy

—:{i,j} eFE, (7)
2innye kg

X=X =

is sufficient to parametrize the Markov chain. The row-
stochastic transition probability from macrostate i to j, Tj;, is
simply given by

X ij X ij
bl (8)
Spxgy X

T['jz

where x;, the sum of normalized weights of all the edges
adjacent to i, is equivalent to the stationary probability of
macrostate i multiplied by 2. In the following, we use x or T
interchangeably as parameters of the Markov chain.

The conjugate prior on reversible chains is based on a
related stochastic process on graphs known as edge-
reinforced random walk (ERW), which proceeds as the
above random walk, with the difference that every time we
traverse an edge {i,j} in either direction, we increase its
weight ky; 5 by one. So, the initial conditions of an ERW are
fully specified by the vertex of origin, y,, and the initial set
of unnormalized edge weights, which will be denoted a. Let
Pyo’a(Dy) be the probability that the ERW traverses a given
sequence of macrostates Dy. By de Finetti’s theorem for
Markov chains, it was shown that the ERW is a mixture of
reversible chains,*! which means that Pyo’a(Dy) is the expec-
tation of the probability of Dy as a random Markov chain,
whose parameters x have a well-defined distribution. We can
write this as
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Pyo,a(DY) =f do—(x)P(DYLx)(ﬁyo,a(x)’ (9)
A

where P(Dy|x) is the likelihood of a reversible Markov
chain parametrized by x and the integral is over the Lebesgue
measure do(x) on the unit simplex A in which x lives. The
density (;Syo’a(x) on the parameters of the Markov chain is a
function of the initial conditions of the ERW. This density
was found to be continuous on the unit simplex and has the
closed form™!

Ty, ™12
By o) =7 DD

— Typea tlvo/z (a,+1)/2
R Y
Xyo H)q&yo y

Vdet(A(x)). (10)

A combinatorial proof yields a closed form for the function
A(x).*! The constant Z, o is given by

H I'(a i )
ligheE {i.j} (|E| _ 1) ! 7Tn—1/2
7 = . (11)
Yo a, a+1\ 2! perkis)
(=2 ] | ~—
2 2
Y#Yo

It is worth noting that all these results have been generalized
to graphs with loops, which are edges that connect every
vertex to itself, to account for the self-transitions expected in
physical systems.41

In model comparison, we are interested in computing the
two integrals presented in Eq. (3). We have seen that both
have closed-form solutions when we choose Dirichlet priors,
but a Dirichlet prior for 7T is defined over all stochastic ma-
trices, neglecting our knowledge of detailed balance. The
first integral in Eq. (3), for P(Dy|L), is greatly simplified if
we choose the prior P(7) to have the form of ¢, ,(x). By Eq.
(9), the integral becomes the probability Py ,(---) of an
ERW, with initial conditions y, and a, and the same path as
Dy. This probability has a very simple form given by the
reinforcement scheme of the ERW. However it is not neces-
sary to trace the walk and compute the probability of each
transition; the measure PJ’oﬂ(”') is just a function of the
transition count matrix, which is written in Eq. 4.13 in Ref.
41. Computing the first integral in Eq. (3) given a single
sequence Dy becomes as straightforward as computing the
probability of an ERW through Dy.

This prior has the further advantage that it is conjugate
for the reversible Markov chain. If we assign a prior density
of qﬁyo,a(x) to the parameters of a reversible chain, and in an
experiment we observe a sequence Dy starting at y,, the pos-
terior distribution of x would be given by (j)yf,,,(x), where y,
is the final vertex this sequence visits and b is the set of
unnormalized edge weights resulting from an ERW with the
same path as Dy. Due to the conjugacy of the prior, the initial
edge weights a can be thought of as pseudocounts, fulfilling
the same role as the hyperparameters of the Dirichlet prior
used before. So, to make this prior noninformative, we could
set the edge weights uniformly to 1, for example. The choice
of hyperparameters is discussed further in Appendix B.

These derivations have taken Dy to be a single
macrostate sequence, but we run into difficulties when the
data are composed of many independent sequences
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{D|,D,,...,D,,} starting from given initial states, which is
the case for most MD simulations. We outline a method to
compute P(Dy|L) in this case, which is developed in detail
in Appendix A. This integral may not be split into factors for
each sequence, but we can factorize the likelihood inside the
integral to obtain

P(Dy|L) = f do(x) 1 P(D;
A

D;eDy

L,x) (Z)yo’a(x) . (12)

Then, we manipulate the integrand, taking advantage of the
conjugate prior, to bring out factors which are just ERW
probabilities for each sequence D;. We are left with an inte-
gral of density ratios, which can be further simplified by
taking out factors that do not depend on x, yielding an ex-
pression of the form,

P(Dy|L) = Q(Dy)J da(x)W(x;Dy) ¢y, (x), (13)
A

where G is a closed-form function of the data, W(x;Dy) is a
product of vertex weights dependent only on the end states
of the observed sequences, and qﬁyf,a/(x) is a pseudoposterior
density. The last term is approximated by Monte Carlo inte-
gration, which makes use of the ERW as a sampling scheme
for the density d)yf,u/(x).

IV. IMPLEMENTATION

In this section we summarize the procedure of Bayesian
model comparison for MD in practice. We begin with a de-
composition of configurational space into microstates, to
which a number of MD trajectories are projected, as well as
several different lumpings. If the lag time we are using is
longer than the interval between conformations in the MD
trajectories, we must first extract a data set at the correct lag
time. For each trajectory, we choose an initial conformation
7, at a random time O0=7=m,, and take the sequence
Dz(ZZ’ZHTlag’ZHZTlags'")~

Once a data set D has been chosen, we compute the
evidence P(D|L) for each of the lumpings. We use indepen-
dent Dirichlet priors for the parameters 6; € ®, such that the
second integral in Eq. (3) for P(D|Dy,L) can be obtained
analytically from Eq. (6). The first integral in Eq. (3), for
P(Dy|L), is computed using either an independent Dirichlet
prior for each row of the transition matrix, which yields an
analytical solution, or the conjugate prior for reversible
Markov chains introduced in Sec. III. Obtaining P(Dy|L)
with the latter prior requires a Monte Carlo integration. The
most expensive part of this computation is sampling from the
asymptotic distribution of the ERW. Using the algorithm pro-
posed in Appendix A, this integration scales as O(N), where
N is the number of macrostates, and it is highly paralleliz-
able. In the examples of the following section, this compu-
tation took only a few minutes.

Note that the evidence P(D|L) is a function of the data
set, which in turn depends on the initial conformations used
for sampling microstate sequences at the desired lag time
from the MD trajectories. To control for the variation that
might arise from this, we perform the computation described
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FIG. 1. (a) Artificial energy surface simulated by Metropolis—Hastings
Monte Carlo. (b) Space partitions of maximal metastability for 2 through 7
macrostates; each state is highlighted in a different color on the xy plane
over a contour plot of the energy.

above for 200 different data sets, which are extracted from
the trajectories by randomly selecting the initial conforma-
tions between time 0 and 7y,,. All of the results in the fol-
lowing section are reported with a confidence interval that
reflects this variation.

We can compute a Bayes factor to compare any two
models by taking the ratio of their evidence. The models are
defined by the lumping L and the type of prior distribution
assigned to 7. A Bayes factor has a meaningful scale related
to betting odds; it tells one how many times more likely one
model is over the other, given the data. Harold Jeffreys pro-
posed some guidelines for its interpretation, which are sum-
marized in Ref. 33. In short, a Bayes factor greater than 100
gives decisive evidence in favor of the model in the numera-
tor of Eq. (1).

V. APPLICATIONS

A. Metropolis—Hastings Monte Carlo simulation
of a model two-dimensional potential

The energy function, plotted in Fig. 1(a), is given by

, 14
1000 (14)

+
oeC d(o’q)s

H(q) =

where d(0,q) is the Euclidean distance between two points o
and ¢, and C is the set of points {(2,2),(2,8),(8,2),(8,8)}. This
potential is simulated by Metropolis—Hastings Monte
Carlo,* with an asymmetric proposal kernel that is uniform
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TABLE L. Dynamics of 2D model potential with 7;,,=20. Logarithm of the
Bayes factors comparing the four-state model, Ly, to all the other models,
denoted Ly, where N is the number of macrostates. The columns reflect the
choice of prior for 7, which is either the conjugate prior on reversible chains
suggested here, or the symmetric Dirichlet prior used previously (Refs. 35
and 21). The first number in each cell is the mean value of the logarithmic
Bayes factor from 200 data sets extracted from the MD trajectories as ex-
plained in Sec. IV and the range between parentheses is its 68% confidence
interval.

In(P(Ly| D)/ P(Ly| D))

N Reversible Markov prior General Markov prior
2 5570 (5541, 5598) 5565 (5536, 5594)
3 3128 (3099, 3156) 3121 (3091, 3147)
5 13.2 (3.9, 22.5) 19.4 (11.2, 27.9)
6 18.4 (11.4, 25.5) 33.8 (27.0, 39.8)
7 42.5 (32.5, 52.6) 66.8 (57.2, 75.9)

on the intersection of a square o(q,) of side 0.5 centered at
the current position g, with the state space ) extending from
0 to 10 in the x and y axes. So, a transition from g, to gy is
accepted with probability

1/Area(a(gy) N Q))
1/Area(o(qy) N Q) /)"

min( 1, eH(ap+H(qp))

The small step size ensures that the simulation behaves like a
form of stochastic dynamics on the potential. A total of 4000
trajectories of 1000 steps were generated, with an equal num-
ber starting at the minima of each of the four wells in the
energy surface. We define 400 microstates by dividing the
entire area with a 20 by 20 uniform grid.

To partition the set of microstates into metastable
macrostates, we used a spectral clustering method known as
Perron cluster cluster analysis (PCCA).** More specifi-
cally, our method is based on the lumping step of the itera-
tive algorithm proposed by Chodera et al.®® We first apply
PCCA, using as input a transition matrix inferred from the
trajectories with the smallest possible lag time, then, we op-
timize the partition in 20 rounds of simulated annealing
aimed at maximizing the metastability, which is measured as
the sum of the macrostates’ self-transition probabilities. The
implementation of this algorithm by Bowman et al.*® was
used to produce metastable partitions with different numbers
of macrostates; these are shown in Fig. 1(b).

The eigenvalue spectrum {\;} of the transition probabil-
ity matrix taken at a lag time of 20 steps and its implied
timescales 7,=-7,,/log(\;), provide evidence that a
dynamics with four states would be Markovian. At this lag
time, there are three time scales greater than 20,
{60.5+0.5,58.8+0.8,31.1 = 0.3}, which are stable with in-
creasing lag time, while the rest are all smaller than 6.3. For
each of the six models in Fig. 1(b), P(D|L) was computed by
the procedure described in Sec. IV.

The results of the model comparison are shown in Table
I. As expected, the partition with four states had the highest
probability given the data and the table contains Bayes fac-
tors that compare every other model to the four-state model.
The Bayes factors obtained with both of the priors for 7' lead
to similar conclusions in this case. The results indicate that
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lumping two kinetically resolved macrostates is penalized
much more heavily than splitting a macrostate in two. This
might be because a model with more macrostates than nec-
essary can fit the data well, but it represents only a slight
increase in complexity with respect to the four-state model.

B. MD simulation of the terminally blocked alanine
peptide

The second example is an MD simulation of the peptide
Ace-Ala-Nme in explicit solvent. The data consist of 975
trajectories from the 400 K replica of a parallel tempering
simulation. They come from an equilibrium pool of constant-
energy, constant-volume trajectories 20 ps long, and sampled
at a period of 0.1 ps. The data set is thoroughly described in
Ref. 47. This peptide has been used previously to test state
decomposition algorithms,20 as well as Bayesian model
comparison,35 because it is possible to identify metastable
states directly from a potential of mean force in torsional
space.

The microstates were defined using a k-centers algorithm
that approximates average-linkage hierarchical clustering.48
Using the heavy-atom root mean squared deviation (RMSD)
as a distance metric, the algorithm produced 3900 mi-
crostates with an average diameter of 0.14 A, where the di-
ameter is the maximum distance between any two structures
in a cluster. The microstates were then clustered automati-
cally into six macrostates by the algorithm described in the
previous example, to form Lg,. A poor six-macrostate de-
composition, Lyo,, was generated by clustering the mi-
crostates to match the manual decomposition defined in
Ref. 20.

Note that the trajectories are relatively short, so we must
choose a lag time smaller than 10 ps if we want to have
sequences of more than two steps and control for the initial
frame noise alluded to above. However, we do not expect
either of the models to be Markovian at lag times smaller
than 8 ps, because the solvent degrees of freedom, neglected
in our state definitions, relax in comparable time scales. 2%
We compared the two models at seven different lag times,
using both of the priors that were assigned to T in the previ-
ous example.

The results are shown in Table II. They suggest that Lyooq
is better than L, at every lag time. Even though the good
model is only approximately Markovian at these lag times,
the Bayes factors can help choose the superior state decom-
position. As in the previous example, the comparisons be-
tween Lyooq and Ly, are similar when we use either prior for
T. However, Bayes factors can also be used to compare the
models where detailed balance is imposed in the prior to
those where it is not. For the good state decomposition of
this system, the prior on reversible Markov chains is strongly
preferred at every lag time. The natural logarithm of this
Bayes factor is in every case greater than 11 within 68%
confidence.

VI. DISCUSSION AND CONCLUSIONS

Statistical hypothesis testing quantifies the evidence for
different models of conformational dynamics allowing us to
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TABLE II. MD of the terminally blocked alanine peptide. Logarithm of the
Bayes factor comparing Lyqog t0 Ly at different lag times. As in Table I, the
columns reflect the choice of prior for 7. The first number in each cell is the
mean value of the logarithmic Bayes factor from 200 data sets extracted
from the MD trajectories as explained in Sec. IV and the range between
parentheses is its 68% confidence interval.

ln(P(Lgood‘D)/P(Lpoor‘D))

Thag (PS) Reversible Markov prior General Markov prior
3 1626 (1571, 1671) 1603 (1561, 1639)
4 1032 (981, 1088) 1014 (978, 1048)
5 701 (654, 752) 691 (660, 726)
6 496 (457, 540) 489 (457, 522)
7 367 (319, 424) 360 (328, 397)
8 283 (230, 336) 274 (238, 308)
9 216 (161, 269) 208 (170, 243)

choose the optimal or most predictive one. In a Bayesian
framework, models specify a distribution over the data. They
must be defined with complete ignorance of the sampled
data, so a hierarchical structure of model parameters is often
useful. Then, a Bayes factor measures the relative evidence
of two models at every value of their parameters. In our case,
the hypotheses tested are the metastable state decomposition,
L, as well as the detailed balance implicit in the prior of 7. In
a frequentist framework, one would device a statistic to test a
hypothesis, which in this case need not specify the distribu-
tion of the data completely. The test would consist of deter-
mining how typical the sample statistic is under said hypoth-
esis.

These methods, Bayesian or frequentist, do not establish
bounds on the error due to assuming the optimal Markov
model, which might still be overly parsimonious. So validat-
ing the Markovian assumption by heuristic or other means is
necessary to assess predictions. The advantage of a Bayesian
framework is that the uncertainty of model parameters and
physical observables associated with them, assuming the
model, emerge naturally from their posterior distributions.
The process of deriving these distributions, known as infer-
ence, is perhaps more widely applied and has a similar math-
ematical structure as model comparison. Appendix D hints at
how to apply the prior on reversible matrices to inference
problems.

Bayes factors hold several advantages over previous ap-
proaches to Markov model validation. One distinction, which
was made clear by the examples, is that it is easy to compare
models with different numbers of macrostates provided the
microstate basis is the same for both models. A perhaps more
important aspect of the Bayesian approach, which sets it
apart from other methods that depend on estimates of the
transition matrix, is that one is able to compare models when
there is little data available. Even when the estimates have
not converged, a Bayes factor will indicate the relative prob-
abilities of two models. On the other hand, if none of the
available models are able to reproduce the dynamics well at
the desired lag time, one would be able to identify the best
model in a set of poor models.

These two properties make a Bayesian approach useful
in adaptive sampling schemes, in which the simulation strat-
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egy is constantly updated based on short trajectories given
fixed state definitions (for an example, see Ref. 50). The
comparison method presented here could be used to identify
the most predictive Markov model at a short lag time, even if
the dynamics at this time resolution are only loosely
Markovian. The Markov model could nonetheless be able to
identify the regions of conformational space where simula-
tion is most needed. As suggested by Singhal,so the ability to
extract a posterior distribution of 7' from the model would
facilitate this task, allowing us to perturb eigenvectors, ei-
genvalues, and other functions of T to predict which states
contribute most to their uncertainties. It would also be pos-
sible to apply more expensive information theoretic strate-
gies to this problem.

In a more direct application, Bayes factors could be in-
tegrated into a state-partitioning algorithm. For example, the
algorithm proposed by Chodera et al.*® could be modified by
substituting the metastability measure by the weight of evi-
dence of a partition, P(D|L). This would allow one to vary
the number of macrostates, &V, in the lumping step, where the
microstate-to-macrostate mapping is optimized. The compu-
tation of the evidence using the prior that enforces detailed
balance scales with system size as O(N), its most expensive
step being the Monte Carlo integration.

In conclusion, we put forward Bayesian model compari-
son as a method to test hypotheses on MD. We introduced a
hierarchical model for metastable dynamics on an arbitrary
number of states, which enforces detailed balance. The prior
distribution of Diaconis and Rolles*' is shown to be analyti-
cally advantageous. The structure of the method is quite gen-
eral, in that any hypothesis expressed as a generative model
for microstate sequences may be tested. This allows for the
possibility of extending our current model, or formulating
altogether new ones to incorporate different physical insights
about simulations of one or multiple ensembles.
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APPENDIX A: INTEGRATING THE LIKELIHOOD
OF MULTITRAJECTORY DATA

In the following, we develop a method for estimating the
probability of a set Dy of independent macrostate sequences,
given the microstate-to-macrostate mapping L. We will
assume the data consist of m independent sequences,
Dy={D,,D,,...,D,}, with known initial states.

We will use the following notation: the first and last
states of sequence D; are, respectively, y; and y;, and its
edge traversal counts will be denoted by k;. The likelihood of
a sequence D;, given a fixed set of parameters x for the
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subscripted probability P, ,(D;|L) denotes the integrated
likelihood of D;, with a prior density ¢, ;(x) on the param-
eters, x.

For notational convenience, we will let the prior density
of x be ¢y AoJ‘o(x)’ with an initial vector of unnormalized edge
weights ko, and a vertex of origin y;,. The probability of Dy
under this prior is

vakO(DY|L JA

fmemDm%mm

i=1

e

(A1)

where we used the conditional independence of the chains
given x to factorize the probability inside the integral. Now,
we can multiply the integrand by a factor of 1,

¢y0 1 kO( )

i, L
i=1 ¢>0 b kO( x)

ny’o,kO(DY|L) = JA d)‘f 0 ko( )

(A2)

ko (x) from the inte-
grand, which is just the joint den51ty of D1 and x, with D,
fixed. Using Bayes theorem,

P(D|x)P(x) = P(x|D)P(D), (A3)

we can rewrite this term as ¢V othy (x )PVO k(D1 |L), where
the new density is the posterlor of x given D,. We have taken
advantage of the conjugacy of the prior ¢ for reversible
Markov chains, as well as the closed-form expression for

Py k(D1 |L), which is given by Eq. 4.13 in Ref. 41. We are
left with

yf()ko(DY|L) PyO k(D |LJ d(r(x)

¢
('{)VO 1s kO( )1>l

We can repeat the last step for all other sequences. For
simplicity, let us define K;=X,_k;. We obtain,

koK) (x). (A4)

Py oDy =TT Py k(DIL) X T, (A5)
i=1
fw&H%")¢ (x) (A6)
i=1 ¢)o K( ) yf,m*Kerl '

Finally, we can simplify the product inside the integral, tak-
ing advantage of the closed form for the density [Eq. (10)],
to get
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F<Ki(yf,i—1) )F( Ki(yp) + 1 )
2 2

I:

il;ll F( Ki(y(),i) )F<Ki(yf,i—l) +1 )

2 2

Xf dU'(X)H Wi(-x)qsyfm,l(”lﬂ(-x)» (A7)
A g

i=1

where we define

12
X
Vi
w,-(x)=|: = l:| .
xyO,i

Everything outside the integral has a simple analytical form
and it is the result we would get if we took the data to be the
concatenation of all the D;. The quantity in brackets inside
the integral takes care of the difference that results from
considering each sequence separate and independent. The in-
tegral can be estimated by Monte Carlo integration.

There is a simple algorithm to obtain approximate, inde-
pendent samples from the density ¢, x (x). In an ERW
starting at y;,, with initial edge weights K,,,,, let {k;; 3(n)} be
the edge-traversal counts after n steps. Consider the statistic
w(n)={ky; 3(n)/ 2y < kg p(n)}. It was also shown in Ref. 41
that as n goes to infinity, x(n) converges in probability to a
random vector « with density ¢>‘, _,m,,(mH(K). So, if we simu-
late this ERW for long enough, we would expect the normal-
ized edge weights to converge to an independent sample of
this density. We can draw a set of samples X in this way to
estimate the integral in question by a Monte Carlo sample
average:

J'douaflwmw¢wwx (A8)
A

i=1

1
m%miﬂmm

xeXi=1

m+1

In the examples of the text, we estimated every integral
from 300 samples generated in this fashion. One advantage
of this scheme, compared to MCMC, is that every sample
obtained is truly independent. However, it is difficult to
know how long we must simulate the ERW to obtain suffi-
cient precision in the elements of each sample to ensure the
dominant error in our estimate of this integral is from the
statistical uncertainty in the above expression. In our compu-
tations, for a system with N macrostates, we ran the ERW for
1000 X N steps. We expect that after this, the normalized
vertex weights {«;(n)} needed to compute the sum will not
deviate greatly from the realization of the random vector
obtained as n goes to infinity. The effect in precision of hav-
ing approximate samples can be determined if we assume
that any error resulting from this will not be systematic. If
we make this assumption, we can test the accuracy of the
method by looking at the convergence of the Monte Carlo
expectation. This convergence was checked by
bootstrapping.51 The error of the numerical method was sig-
nificantly smaller than the variation resulting from the choice
of an initial reading frame for the trajectories, which is why
it was not given in the results.
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APPENDIX B: CHOICE OF HYPERPARAMETERS
FOR THE PRIOR

The prior distribution has most influence when perform-
ing inference with little data, while it should not matter when
there is enough data. We would like to choose an objective or
uninformative prior such that conclusions are based solely on
information from the simulation. We suggested that one
make all the initial, unnormalized edge weights defined in
the prior, k(, equal to 1. This could be interpreted as giving
no preference to any transition (including self-transitions)
over another. We made this choice in our examples. There
may be more objective priors, such as Jeffreys prior, which is
proportional to the square root of the Fisher information.
However, their derivation was not pursued in this study.

We must also choose a vertex of origin for the prior,
which was denoted by y,o. When we choose any single ver-
tex, we lose the notion of symmetry in the prior. We could
also use a uniform mixture of priors of the form P(x)
=2 YN‘ld)y,kO(x). Note that the distribution (bymemH(x) we
must sample from in order to estimate the integral in Z does
not depend on the vertex y;, defined in the prior. Thus, from
a large sample of this distribution, we can estimate the inte-
gral regardless of the vertex of origin we chose for the prior.
This makes it easy to employ the uniform mixture of priors
shown above and this is what was done in the examples.

APPENDIX C: SPEEDING UP THE ERW

We found a way to speed up the simulation of an ERW
that is worth explaining here. In a physical dynamical system
with metastability, we expect macrostates to have large self-
transition probabilities. So, an ERW with initial edge weights
defined by K,,,, (the added edge traversals observed in all
the sequences D;) will likely spend a lot of time traversing
loops. We can avoid simulating this by showing that the self-
transition probabilities have a Beta distribution, because of
an equivalence between the edge-reinforced walk and the
well-known Polya-urn process.

Consider any vertex, y. We will denote the weight of the
adjacent loop, or the edge for self-transitions, k,(n), and the
summed weights of the edges that connect y to every other
vertex k,(n), both indexed by the number of steps the ERW
has taken. We want to study the asymptotic behavior of the
self-transition probability p,=k;(n)/(k,(n)+k,(n)). Suppose
we begin an ERW at y, we will choose to traverse the adja-
cent loop with probability p,, in which case we increase k; by
2; alternatively, we will go to a different vertex and return to
y in a finite number of steps almost surely,41 in which case
we increase k, by 2. This is equivalent to the Polya-urn
scheme, in which we have an urn with some number of red
and blue balls, analogous to k; and k,, and at each step we
take a ball at random from the urn and put it back in along
with two balls of the same color.

It is known that in a Polya-urn process, p, converges
almost surely to a random variable p distributed as



045106-9 Bayesian comparison of Markov models of MD
k,(0) k,.(0)
p~ Beta(’—), ANEA |
2 2

If we wanted to make the simulation of the ERW faster, we
could first sample an ERW on the graph without loops. Then,
for each vertex y in the graph take a sample of p from the
corresponding Beta distribution and from this value of p and
the final value of k, for the vertex, generate a sample of the
final loop weight k;. In addition, the Beta distribution of p
gives us a graphical picture of the marginal prior we assign
to the self-transition probabilities, based on which we could
adjust its hyperparameters. This procedure was not followed
here.

APPENDIX D: BAYESIAN INFERENCE PROBLEMS

The numerical techniques developed here for model
comparison may also be applied to Bayesian inference prob-
lems. Suppose we want to know the posterior average of
some function of the transition matrix A(7), given a set of
MD trajectories sampled at a fixed lag time. We would like
to compute the integral

E[A(T)|D,L]=fded@A(T)P(T,®|D,L), (D1)

where we are keeping the macrostate definition L fixed. Ap-
plying Bayes equation to the probability inside the integral,
we get

[[dTd®A(T)P(D|T,0,L)P(T,0)
[[dTd®P(D|T,®,L)P(T,0)

E[A(T)|D,L] = (D2)

We can factorize the integrals in the numerator and denomi-
nator as we did in Eq. (3) in the main text. We obtain the
same integral over d® above and below, which cancels out
leaving,

[dTA(T)P(Dy|T,L)P(T)
[dTP(Dy|T,L)P(T)

E[A(D|D,L]= (D3)

It is possible to marginalize out 7 in the denominator, as
we show in Eq. (A1), and the integral in the numerator can
be manipulated in the same way. We can go through the steps
followed in that derivation to obtain a series of prefactors
with closed-form expressions, which will be the same in the
numerator and denominator. Using the notation of Eq, (A1),
we are left with the ratio of integrals

k., ()

fAdO'(X)A(X)Hizlwi(x) ¢yﬁm, el
fAdo-(x)Hiz]Wi(x)d)yf,m,]( (x)

m+1

E[A(T)|D,L] = (D4)

Each integral in this ratio may be approximated by a Monte
Carlo integration procedure, where we draw many samples,

.X, -~ ¢y K (-x)7

' Bl

and take the sample mean of A(x')II;=;w;(x’) and
[T,=,w;(x"), respectively. The rate of convergence of this al-
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gorithm will depend on the variance of the integrands under
this measure.
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