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You might (justifiably) be wondering…

1. WTF?

2. How on earth did we get here?

3. Why is this person keeping me from margaritas?

I will answer at least one of these questions in this talk.



What is ML/MM REPEX/ATM FEP/MBAR RBFE 
and WOULD anyone WANT TO usE them?

To understand this, we first need to review: 
1. How we got here 
2. Where we are now 
3. Where we might be headed



A brief history of time(steps)

STEPS

AND MD

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011 
Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011
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Then, the ratio of transition kernels appearing in Eq. 10 can be written in terms of noise history ⇤t and the computed
reverse noise history ⇤⇥t ,
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where the tildes are dropped because the microstate x contains no momenta. The quantity |⌦xt/⌦⇤t| represents the
Jacobian for the change of variables from the ⇤t to xt, and the Jacobians in the numerator and denominator cancel.
The quantity in Eq. 40 can easily be computed during integration.

Acceptance criteria for Langevin integrator of Brooks, Brünger, and Karplus (BBK)

The Brünger-Brooks-Karplus (BBK) stochastic integrator [33, 34] is a popular integrator for simulating Langevin
dynamics. The application of the corresponding propagator Kt(x⇥

t , xt) can be implemented via a velocity Verlet
scheme [35, 36],

v⇤t = v⇥t +
�t

2m

�
Ft(r

⇥
t )� ⇥mv⇥t +

⌘
2⇥m

�t
⇤t

 

rt = r⇥t +�t v⇤t

vt =
1

1 + ��t
2

⌦
v⇤t +

�t

2m

�
Ft(rt) +

⌘
2⇥m

�t
⇤⇤t

 ↵
(41)

where rt and vt denote the respective Cartesian position and velocity components of the microstate xt, ⇥ the effective
collision frequency with units of inverse time, and m the particle mass. v⇤t is an auxiliary variable used only in
simplifying the mathematical representation of the integration scheme. Note that we require two random variates, ⇤t
and ⇤⇤t, per degree of freedom per timestep in order for this scheme to be able to generate both the forward trajectory
X and its time-reverse X̃ (see, e.g., Section 2.2.3.2 of [36]).

The noise history terms ⇤t and ⇤⇤t are normal random variates with zero mean and variance ��1. Their joint
distribution can therefore be written,
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For every step x⇥
t ⇤ xt, the positions and velocities undergo a transition (r⇥t , v

⇥
t ) ⇤ (rt, vt) determined by the noise

variables (⇤t, ⇤⇤t). A corresponding choice of noise variables (⇤̃t, ⇤̃⇤t) will generate the reverse step, x̃t ⇤ x̃⇥
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In order to write the ratio of transition kernels appearing in Eq. 10 in terms of noise variables (⇤t, ⇤⇤t) and the com-
puted reverse noise variables (⇤̃t, ⇤̃⇤t), we must first compute the Jacobian J(⇤t, ⇤⇤t) because the random variates are
not in Cartesian space,
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which can be shown to be independent of ⇤t and ⇤⇤t. The conditional path action difference can now be computed,
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discrete timestep Langevin integrator

Where do we get the forces?



Molecular mechanics force fields were developed  
for things called “minicomputers”

Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

typical class I molecular mechanics force field 
(ca. 1986 - 2024)

DEC PDP-11 
~45 years old

shi!y Taylor series 
truncated at lowest order

crappy Fourier series 
truncated at n=6

don’t even get me  
started on this fucker



GAFF 1 
(1999)

thrombin 
PDB101: 1PPB

GAFF 2 
(2016)

OPLS2.1 
(2015)

smirnoff99Frosst 
(2018)

openff 1.0 
(2019)

we’ve made significant progress in parameters since 1986, 
but we’ve still been stuck with the same functional form 

Open Force Field Initiative

“parsley”



..

  h!p://openforcefield.org 

http://openforcefield.org
http://openforcefield.org


mm force fields worK OK. 
But we would love to do better. 

Open Free Energy Consortium Annual Report 2022 
h!p://openfree.energy 

openff-2.0.0 
Amber ff14sb 
TIP3P 

http://openfree.energy


much greater impact is possible if we could 
reduce our predictive model errors

M. R. Shirts, D. L. Mobley and Sco! P. Brown. "Free energy calculations in structure-based drug design",  
in Drug Design: Structure- and Ligand-Based Approaches, pgs. 61-86, 2010.

4 Shirts, Mobley, and Brown

-2 0 2 4

Binding Energy (kcal/mol)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty
 o

f 
S

y
n

th
e

s
is

 o
f 

C
o

m
p

o
n

d

Unassisted Distribution
Screened with 0.5 kcal/mol noise
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1.4 kcal/mol

Fig. 1.1. Distribution of drug a⇤nities of the chemist’s predictions (blue) compared
to the distribution of drug a⇤nities after selection by computer with computation
error � = 0.5 (purple), � = 1.0 (pink), and � = 2.0 (red). The shaded area represents
the total probability of a proposed modification with a⇤nity gain greater than 1.4
kcal/mol. In many situations, Even with moderate error, a reliable method of
filtering compounds could significantly improve the e⇤cency of synthesis in lead
optimization.

one round of synthesis. With 1.0 kcal/mol error, we still have 36% chance
of achieving the goal with the first molecule synthesized, for about a 5 fold
decrease in median number synthesized. Surprisingly, even with 2 kcal/mol
computational noise the time to the goal is reduced about threefold. Simi-
lar computations can be done with large numbers of computer evaluations;
unsurprisingly, the more computational evaluations can be done, the more
computational noise can be tolerated and still yield useful time savings. For
example, even with 2 kcal/mol error, if 100 molecules can be screened, num-
ber of molecules required to be synthesized is reduced eightfold, similar to
the results for 10 molecules and 0.5 kcal/mol error.

Even relatively small numbers of moderately accurate computer predic-
tions may be able to give significant advantage in the pharmaceutical work
flow; 100 screened molecules with 2 kcal/mol noise or 10 screens with 1
kcal/mol noise in our example process could reduce the number of molecules
required to be synthesized by almost an order of magnitude. Clearly, these
calculations assume the simulations are not biased against active compounds,
and errors that are highly dependent on the binding system would result in
less reliable advantages. But physically based prediction methods should in
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What is holding free energy calculations back?

2.   We’re missing some essential chemical in our simulations because we don’t bother to 
model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3.   We haven’t sampled all of the relevant conformations because we can’t simulate for 
long enough
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1. The forcefield may do a poor job of modeling the physics of our system 
(because it is constrained by choices made 40 years ago)
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Hwang et al. (1994) h!p://doi.org/10.1021/ja00085a036 

We could go to class II force fields… 
But the number of terms explodes combinatorially

Can we do a be!er job of modeling true many-body local valence terms, 
and set ourselves up to solve the other challenges too?

http://doi.org/10.1021/ja00085a036


we have real computers now

Why not put them to work?

$1599 MSRP*

* A new PDP-11 in ~1975 would cost $160,000 in today’s dollars



a new generation of MACHINE LEARNING potentials provide 
much more flexibility in functional form (at higher cost)

OLEXANDR 
ISAYEV

ADRIAN 
ROITBERG

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. 
http://doi.org/10.1039/c6sc05720a 

ANI family of quantum machine learning potentials

radial and angular features deep neural network for each atom excellent agreement with DFT

Can train an ANI model in ~1 day

http://xlink.rsc.org/?DOI=c6sc05720a


ANI 
distance and angle 

SchNet 
E(3) invariant

Tensor Field Networks 
E(3) equivariant

The ANI class of models uses distance- and angle-based features [h!p://doi.org/10.1039/c6sc05720a].  
SchNet uses distance-based features for continuous convolutions [h!ps://doi.org/10.1038/ncomms13890].  
Tensor Field Networks and Clebsch-Gordon nets use spherical harmonics [h!ps://arxiv.org/abs/1802.08219; h!ps://bit.ly/2SRVS67]. 

ml potentials are seeing rapid evolution in 
architectures that encode physical invariances

http://doi.org/10.1039/c6sc05720a
https://doi.org/10.1038/ncomms13890
https://arxiv.org/abs/1802.08219
https://bit.ly/2SRVS67


ML/MM REPEX/ATM FEP/MBAR RBFE

OK, so what does this mean?



ML/MM REPEX/ATM FEP/MBAR RBFE
molecular mechanics force field



ML/MM REPEX/ATM FEP/MBAR RBFE
hybrid machine learning / molecular mechanics force field



ML/MM REPEX/ATM FEP/MBAR RBFE
Free energy perturbation uses alchemical intermediates to compute binding free energies

From the lab of Emilio Gallicchio (Brooklyn College, CUNY) 
JCIM 17:3309, 2021  ; JCIM 62:309, 2022 ; JCIM 63:2438, 2023 ; JCIM 64:250, 2024

∆Gbind

PLP + L

PøP + ø
restraint imposition discharging steric decoupling noninteracting

Includes all contributions from enthalpy and entropy of binding to a flexible receptor

Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, Schrödinger, and many more
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partition function

thermodynamic 
cycle



Alchemical free energy calculations have a 
broad domain of applicability in drug discovery

driving affinity / potency

optimizing thermostability 
Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016 
h!ps://doi.org/10.1002/anie.201510054 

driving selectivity 
Moraca, Negri, de Olivera, Abel JCIM 2019 
h!ps://doi.org/10.1021/acs.jcim.9b00106  
Aldeghi et al. JACS 139:946, 2017. 
h!ps://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity 
0 200 400 600 800 1000 1210 aa

0
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EGFR L858R

Rec.. Furin-like Rec.. GF_recep_IV Pkinase_Tyr
Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang.  
Communications Biology 1:70, 2018 
h!ps://doi.org/10.1038/s42003-018-0075-x  
Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018  
h!ps://doi.org/10.1021/acscentsci.8b00717

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 
h!ps://doi.org/10.1021/acs.jcim.0c00900  

https://doi.org/10.1002/anie.201510054
https://doi.org/10.1021/acs.jcim.9b00106
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1021/acs.jcim.0c00900


partition coefficients (logP, logD) and permeabilities 

porin permeation 

crystal polymorphs, etc.

structure-enabled ADME/Tox targets 

hERG CYP3A4

…AND HOLD THE POTENTIAL FOR Even broader 
applicability as more structural data emerges



ML/MM REPEX/ATM FEP/MBAR RBFE
Alchemical Transfer Method (ATM) defines alchemical intermediates in a surprisingly simple way:

From the lab of Emilio Gallicchio (Brooklyn College, CUNY) 
JCIM 17:3309, 2021  ; JCIM 62:309, 2022 ; JCIM 63:2438, 2023 ; JCIM 64:250, 2024

absolute binding free energies relative binding free energies

unmodified 
potential

displaced ligand 
potential

ATM works with molecular mechanics and machine learning force fields without any special changes!



ML/MM REPEX/ATM FEP/MBAR RBFE
replica exchange sampling of multiple alchemical states

Independent simulations
Easy to parallelize, but sampling problems 
at any ! can make calculations unreliable 
simple but dangerous due to poor 
sampling of conformational changes 
coupled to λ

AMBER18 TI 
Song, Lee, Zhu, York, Merz 2019 
h!ps://doi.org/10.1021/acs.jcim.9b00105

Replica exchange (REPEX)
Good sampling at any ! can rescue 
problems at other ! if good ! overlap 
reliable but communication heavy

Schrödinger FEP+ 
Wang, Wu, Deng, Kim, ... Abel 2015 
h!ps://doi.org/10.1021/ja512751q 

NAMD 
Jiang, Thirman, Jo, Roux 2018 
h!p://doi.org/10.1021/acs.jpcb.8b03277 

OpenMM 
Chodera, Shirts  
h!ps://doi.org/10.1063/1.3660669 

Nonequilibrium methods
Less efficient than equilibrium 
calculations, but can work robustly and 
scalably if properly tuned 
cloud- and wall clock friendly

pmx / gromacs 
Aldeghi, Gapsys, de Groot 2018 
h!ps://doi.org/10.1021/acscentsci.8b00717  

Orion NES!

https://doi.org/10.1021/acs.jcim.9b00105
https://doi.org/10.1021/ja512751q
http://doi.org/10.1021/acs.jpcb.8b03277
https://doi.org/10.1063/1.3660669
https://doi.org/10.1021/acscentsci.8b00717


ML/MM REPEX/ATM FEP/MBAR RBFE
Multistate Benne! Acceptance Ratio (MBAR)  provides an optimal way to analyze data 

to estimate free energy differences

Shirts and Chodera. JCP 129:124105, 2008

unnormalized probability distribution

We can use optimal bridge sampling estimator machinery (Z. Tan, Meng, Wong, others) to produce the 
multistate generalization of Benne! acceptance ratio (BAR) that provides efficient estimators for
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dx qi(x)
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ML/MM REPEX/ATM FEP/MBAR RBFE
Relative Binding Free Energy (RBFE) calculations are a useful way to make decisions about 

which synthetically tractable molecules to make

Best Practices for Alchemical Free Energy Calculations 
h!ps://doi.org/10.33011%2Flivecoms.2.1.18378  

~5,000  
building blocks

Open Free Energy Consortium: h!ps://openfree.energy/

relative alchemical transformation network docked poses

https://doi.org/10.33011%2Flivecoms.2.1.18378


We had previously seen MM to ML/MM corrections had 
shown significant promise…

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



ML/MM REPEX/ATM FEP/MBAR RBFE 
appears to work surprisingly well

Zariquiey, Galvelis, Gallicchio, Chodera, Markland, and De Fabritiis 
Enhancing protein-ligand binding affinity predictions using neural network potentials 
JCIM 2024 (in press)

significantly increased utility compared to GAFF2.11

ANI2x vs GAFF2.11 vs OPLS3e (FEP+) 
(ANI2x/GAFF used FF14SB/TIP3P for protein/solvent)



NNPOps library 
h!ps://github.com/openmm/nnpops 
* CUDA/CPU accelerated kernels 
* API for inclusion in MD engines 
* Ops wrappers for ML frameworks 

(PyTorch so far) 
* Community-driven, package agnostic

~3x slower than GPU MD right now, but need 2x smaller timestep 
Notably, MD will not get much faster for small systems as hardware improves. 

ML will continue to get much faster.paper: https://arxiv.org/abs/2201.08110 
code: https://github.com/openmm/nnpops 

PDB ID # res # heavy atoms
OpenMM  
ns/day 

(4 fs timestep)

TorchANI 
QML/MM ns/day  

(2 fs timestep)

OpenMM 
QML/MM* ns/day

(2 fs timestep)

3BE9 328 48 995 14.0 151 / 74.2

2P95 286 50 1006 12.2 147 / 73.5

1HPO 198 64 1227 13.4 152 / 65.9

1AJV 198 75 1382 12.6 155 / 60.1

* ANI ensemble size:  1 / 8

RTX 4090 benchmarks

ML/MM REPEX/ATM FEP/MBAR RBFE 
Can be surprisingly fast

https://github.com/openmm/nnpops
https://arxiv.org/abs/2201.08110
https://github.com/openmm/nnpops


Openmm 8 makeS ML/MM simulations 
incredibly easy

https://github.com/openmm/openmm-ml 

conda install -c conda-forge openmm-ml

https://github.com/openmm/openmm-ml


ML potentials are not without challenges. 
It’s still early days.

~ A gallery of horrors ~

torsion angle

torsion angle

MM ML

0 π-π

0

π

-π

0 π-π

0

π

-π

ANI2x proton cannon! 90-degree sulfonamides! Totally different amide torsions!
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CAN WE change practice in structure-enabled drug 
discovery by leveraging data we generate?

2023

week 1 week 2

designs/ 
predictions

synthesis new data
designs/ 

predictions
synthesis new data

using published force field model using the same published force field model! 
we haven’t learned anything from the data

“Insanity is doing the same thing over and over again and expecting different results” 
- Rita Mae Brown (not Albert Einstein)



CAN WE change practice in structure-enabled drug 
discovery by leveraging data we generate?

2023

2025

week 1 week 2

designs/ 
predictions

synthesis new data
designs/ 

predictions
synthesis new data

using published force field model using the same published force field model! 
we haven’t learned anything from the data

week 1 week 2

synthesis new data
designs/ 

predictions 
2.0

synthesis

using force field model 
built from public + private data

using new model tuned to target 
from first week’s data

build model 2.0!
designs/ 

predictions 
1.0

We want to introduce more “learnability” into our potentials



Why do we need mm at all?

ANI2x

Can we just use ML force fields for everything? 
We can finally be free of the hegemony of bonds!



Potentials are free of singularities, so simple linear alchemical potentials 
can robustly compute alchemical free energies

Simple restraints can be used when we need to  
enforce specific chemical species

JOSH FASS
MARCUS 
WIEDER

preprint: h!ps://doi.org/10.1101/2020.10.24.353318  
code: h!ps://github.com/choderalab/neutromeratio 

ANI-2x 

ML potentials can be used to model entire 
systems in free energy calculations

We can even make and break bonds!

https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio


Pure ML potentials are not highly accurate for condensed 
phase properties (yet), but can learn from data!

preprint: https://doi.org/10.1101/2020.10.24.353318
code: https://github.com/choderalab/neutromeratio 

test set performance

Regularization by QM data

training / validation optimization

Fast on-the-fly reweighting enables inexpensive loss/gradient 
computation without repeating expensive free energy calculation

JOSH FASS
MARCUS 
WIEDER

https://doi.org/10.1101/2020.10.24.353318
https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio
https://github.com/choderalab/neutromeratio


Ml potentials trained only on qm data omit quantum 
nuclear effects, which are important for h-bonds

Li, Walker, Michaelides. PNAS 108:6369, 2011. 
h!ps://www.pnas.org/doi/abs/10.1073/pnas.1016653108 

We can fix this by including experimental condensed-phase data in our ML potential training, 
just like we do with MM force fields

https://www.pnas.org/doi/abs/10.1073/pnas.1016653108


Ml potentials trained only on qm data omit quantum 
nuclear effects, which are important for h-bonds

Li, Walker, Michaelides. PNAS 108:6369, 2011. 
h!ps://www.pnas.org/doi/abs/10.1073/pnas.1016653108 

We can fix this by including experimental condensed-phase data in our ML potential training, 
just like we do with MM force fields

Rossi, Fang, Michaeledis. JPC Le!ers 6:4233, 2015. 
h!ps://doi.org/10.1021/acs.jpcle!.5b01899 

https://www.pnas.org/doi/abs/10.1073/pnas.1016653108
https://doi.org/10.1021/acs.jpclett.5b01899


We need foundation datasets



We are building foundation qm datasets useful for 
building and assessing ml and mm models

OpenMM SPICE v1 (2M QM snapshots) 
• fragments of biomolecules (and their dimers) 
• dipeptides 
• ion pairs 
• PubChem (15K molecules) 
• Solvated amino acids

OpenMM SPICE v2 [nearly done] 
• water clusters 
• PubChem (B, Si) 
• amino acid : ligand fragments from the PDB 
• solvated PubChem subset

OpenMM SPICE v3 [planning] 
• virtual synthetic spaces (Enamine REALSpace, etc.)  
• More levels of theory

h!ps://github.com/openmm/spice-dataset 
Scientific Data 10:11, 2023 

h!ps://doi.org/10.1038/s41597-022-01882-6 

DFT ωB97M-D3(BJ)/def2-TZVPPD level of theory 
>4M core-hours computed on QCFractal academic clusters 

also DFT B3LYP-D3BJ/DZVP (OpenFF default)

+ huge thanks to Prescient/Genentech (Josh Rackers) 
and Exscientia

https://github.com/openmm/spice-dataset
https://doi.org/10.1038/s41597-022-01882-6


The ThermoML Archive from NIST provides a wealth of 
physical property data for refitting Lennard-Jones

h!ps://trc.nist.gov/ThermoML/ 
h!ps://docs.openforcefield.org/projects/evaluator

https://trc.nist.gov/ThermoML/
https://docs.openforcefield.org/projects/evaluator


We need foundation models



We’ve only seen the first steps toward foundation 
ML potentials for small molecule drug discovery

openmm-ml: h!ps://github.com/openmm/openmm-ml 

conda install -c conda-forge openmm-ml

ANI2x : 9M QM calculations, 7 elements (H, C, N, O, F, Cl, S) 
h!ps://pubs.acs.org/doi/10.1021/acs.jctc.0c00121  

AIMNet2 : 20M QM calculations, 14 elements, charged and neutral species 
h!ps://doi.org/10.26434/chemrxiv-2023-296ch  

MACE-OFF23 : 2M QM calculations, trained on SPICE dataset (15 elements) 
h!ps://arxiv.org/abs/2312.15211 

https://github.com/openmm/openmm-ml
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00121
https://doi.org/10.26434/chemrxiv-2023-296ch
https://arxiv.org/abs/2312.15211


A new paradigm emerges

structure-enabled target

initial hits with structural 
hypotheses 

1-10 hits 
20 - 50 µM 

no need for SAR

. .
 . 

ideation of related 
compounds from 

Enamine REALSpace 
select 100K from 38.5B 

compounds

Prioritize compounds  
for synthesis 

[1 week]

Enamine REALSpace 
synthesis and assay 

[4 weeks]

Round 1 Round 2 Round 3

100K REALSpace ideas

Optimized initial leads 
with progressable  

Tier 1 ADME 
and SAR

Target candidate profile (TCP) 
for acceptance into lead 

optimization program

100K REALSpace ideas

96 - 192 REALSpace  
compounds selected

100K REALSpace ideas

96 - 192 REALSpace  
compounds selected

Prioritize compounds  
for synthesis 

[1 week]

tailoring 
[1 day]

Enamine REALSpace 
synthesis and assay 

[4 weeks]

100K REALSpace ideas

96 - 192 REALSpace  
compounds selected

Prioritize compounds  
for synthesis 

[1 week]

tailoring 
[1 day]

use foundation model 
trained on public data

fine-tune model on 
internal program data

fine-tune model on 
internal program data



What is holding free energy calculations back?

2.   We’re missing some essential chemical in our simulations because we don’t bother to 
model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3.   We haven’t sampled all of the relevant conformations because we can’t simulate for 
long enough

V (q) =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2

+
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dihedrals
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2
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[
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R12
ij

−
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R6
ij

+
qiqj

εRij

]

1. The forcefield may do a poor job of modeling the physics of our system 
(because it is constrained by choices made 40 years ago)



ML potentials make it easier to solve  
the other challenges too!

2.   We’re missing some essential chemical in our simulations because we don’t bother to 
model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3.   We haven’t sampled all of the relevant conformations because we can’t simulate for 
long enough

V (q) =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2

+
∑

dihedrals

Vn

2
[1 + cos(nφ − γ)] +

∑

i<j

[

Aij

R12
ij

−

Bij

R6
ij

+
qiqj

εRij

]

1. The forcefield may do a poor job of modeling the physics of our system 
(because it is constrained by choices made 40 years ago)

Incredibly easy to implement constant-pH and related algorithms now that 
we don’t have to worry about bookkeeping MM valence terms!

We can turn generative models of protein conformation into  
clever Monte Carlo moves!



Nobody likes the current drug discovery paradigm

HIT-TO-LEAD LEAD OPTIMIZATION

Target Candidate 
Profile (TCP)

initial 
hits

Lead Candidate 
Profile (LCP)

currently ~3.5 years, ~2000 compounds, $12.5M, ~50% success rate [1]

https://www.nature.com/articles/nrd3078


There are better strategies we could exploit  
if our simulations can learn from data 

INEXPENSIVE CHEMISTRY 
(e.g. nanoscale chemistry, 

Enamine REALSpace)

HIT-TO-CANDIDATE

Target Candidate 
Profile (TCP)

target

maybe < 1 year, < 500 molecules synthesized by CRO FTE chemists?

rapidly build accurate model of 
binding site to inform FTE chemistry



There’s the potential for a completely new 
paradigm for discovery

Target Candidate 
Profile (TCP)

target

+
GENERATIVE DESIGN  

CONDITIONED ON OBJECTIVES

Multiple candidates for 
preclinical development

<< 1 year, ~ 10 molecules synthesized by CRO FTE chemists

What does it take to get here?



We don’t have the scale of (experimental) data to do this

OpenAI: 
DALL-E 2 was trained on a dataset of 650 million images  

GPT-3 was trained on a corpus of 22.5 billion pages of text (45 TB)  

CADD: 
Typical drug discovery programs make and test ~2000 compounds 

PDBBind contains ~20K protein:ligand complexes 

BigBind contains 538K measurements paired with structures 

ChEMBL contains 2.4M compounds, but it’s a dumpster fire 
Landrum and Riniker, JCIM 2024 
https://pubs.acs.org/doi/full/10.1021/acs.jcim.4c00049 

https://pubs.acs.org/doi/full/10.1021/acs.jcim.4c00049


…but if we have a good enough simulator 
(and enough money), we can simulate our way there.



SIMULATE Emulate Generate
build accurate phyiscal 
biomolecular simulation 

models from limited QM + 
experimental data

build surrogate models 
that accurately model 

biomolecular simulations

build generative ML models 
that predict molecules 

conditioned on design goals



SIMULATE

Emulate

Generate



CHODERA LAB

- All funding: h!p://choderalab.org/funding

http://choderalab.org/funding

