ML/MM REPEX/ATM FEP/MBAR RBFES AND YOU

John D. Chodera
MSKCC Computational and Systems Biology Program
http://choderalab.org

YOU MIGHT (JUSTIFIABLY) BE WONDERING...

YOU MIGHT (JUSTIFIABLY) BE WONDERING...

 1. WTF?
YOU MIGHT (JUSTIFIABLY) BE WONDERING...

1. WTF?

2. How on earth did we get here?

YOU MIGHT (JUSTIFIABLY) BE WONDERING...

1. WTF?

2. How on earth did we get here?
3. Why is this person keeping me from margaritas?

YOU MIGHT (JUSTIFIABLY) BE WONDERING...

1. WTF?

2. How on earth did we get here?
3. Why is this person keeping me from margaritas?

I will answer at least one of these questions in this talk.

WHAT IS ML/MM REPEX/ATM FEP/MBAR RBFE AND WOULD ANYONE WANT TO USE THEM?

To understand this, we first need to review: 1. How we got here
2. Where we are now
3. Where we might be headed

A BRIEF HISTORY OF TIME(STEPS)

discrete timestep Langevin integrator

$$
\begin{aligned}
v_{t}^{\prime} & =v_{t}^{*}+\frac{\Delta t}{2 m}\left(F_{t}\left(r_{t}^{*}\right)-\gamma m v_{t}^{*}+\sqrt{\frac{2 \gamma m}{\Delta t}} \xi_{t}\right) \\
r_{t} & =r_{t}^{*}+\Delta t v_{t}^{\prime} \\
v_{t} & =\frac{1}{1+\frac{\gamma \Delta t}{2}}\left[v_{t}^{\prime}+\frac{\Delta t}{2 m}\left(F_{t}\left(r_{t}\right)+\sqrt{\frac{2 \gamma m}{\Delta t}} \xi_{t}^{\prime}\right)\right]
\end{aligned}
$$

Where do we get the forces?

MOLECULAR MECHANICS FORCE FIELDS WERE DEVELOPED FOR THINGS CALLED "MINICOMPUTERS"

DEC PDP-11
~ 45 years old
typical class I molecular mechanics force field (ca. 1986-2024)

shitty Taylor series
truncated at lowest order

$$
\begin{aligned}
& \text { crappy Fourier series } \\
& \text { truncated at } \mathrm{n}=6
\end{aligned}
$$

don't even get me started on this fucker

WE'VE MADE SIGNIFICANT PROGRESS IN PARAMETERS SINCE 1986,
BUT WE'VE STILL BEEN STUCK WITH THE SAME FUNCTIONAL FORM
Open Force Field Initiative

An open and collaborative approach to better force fields

Software permissively licensed under the MIT License and developed openly on GitHub.

OPEN SCIENCE

Scientific reports as blog posts, webinars and preprints

Curated quantum chemical and experimental datasets used to parameterize and benchmark Open

Force Fields.

MM FORCE FIELDS WORK OK. BUT WE WOULD LOVE TO DO BETTER.

Open Free Energy Consortium Annual Report 2022

http://openfree.energy

MUCH GREATER IMPACT IS POSSIBLE IF WE COULD REDUCE OUR PREDICTIVE MODEL ERRORS

binding free energy gain in lead optimization synthesis

WHAT IS HOLDING FREE ENERGY CALCULATIONS BACK?

1. The forcefield may do a poor job of modeling the physics of our system (because it is constrained by choices made $\mathbf{4 0}$ years ago)

$$
V(\mathbf{q})=\sum_{\text {bonds }} K_{r}\left(r-r_{e q}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{e q}\right)^{2}+\sum_{\text {dihedrals }} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]+\sum_{i<j}\left[\frac{A_{i j}}{R_{i j}^{12}}-\frac{B_{i j}}{R_{i j}^{6}}+\frac{q_{i} q_{j}}{\epsilon R_{i j}}\right]
$$

2. We're missing some essential chemical in our simulations because we don't bother to model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3. We haven't sampled all of the relevant conformations because we can't simulate for long enough

WHAT IS HOLDING BACK FREE ENERGY CALCULATIONS?

1. The forcefield may do a poor job of modeling the physics of our system (because it is constrained by choices made $\mathbf{4 0}$ years ago)

$$
V(\mathbf{q})=\sum_{\text {bonds }} K_{r}\left(r-r_{e q}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{e q}\right)^{2}+\sum_{\text {dihedrals }} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]+\sum_{i<j}\left[\frac{A_{i j}}{R_{i j}^{12}}-\frac{B_{i j}}{R_{i j}^{6}}+\frac{q_{i} q_{j}}{\epsilon R_{i j}}\right]
$$

2. We're missing some essential chemical in our simulations because we don't bother to model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3. We haven't sampled all of the relevant conformations because we can't simulate for
long enough

WE COULD GO TO CLASS II FORCE FIELDS... BUT THE NUMBER OF TERMS EXPLODES COMBINATORIALLY

Can we do a better job of modeling true many-body local valence terms, and set ourselves up to solve the other challenges too?

WE HAVE REAL COMPUTERS NOW

\$1599 MSRP*

Why not put them to work?

A NEW GENERATION OF MACHINE LEARNING POTENTIALS PROVIDE MUCH MORE FLEXIBILITY IN FUNCTIONAL FORM (AT HIGHER COST)

ANI family of quantum machine learning potentials
radial and angular features

deep neural network for each atom

Can train an ANI model in ~1 day

ML POTENTIALS ARE SEEING RAPID EVOLUTION IN ARCHITECTURES THAT ENCODE PHYSICAL INVARIANCES

ANI

distance and angle

SchNet
$E(3)$ invariant

Tensor Field Networks
$E(3)$ equivariant

The ANI class of models uses distance- and angle-based features [http://doi.org/10.1039/c6sc05720a].
SchNet uses distance-based features for continuous convolutions [https://doi.org/10.1038/ncomms13890].
Tensor Field Networks and Clebsch-Gordon nets use spherical harmonics [https://arxiv.org/abs/1802.08219; https://bit.ly/2SRVS67].

ML/MM REPEX/ATM FEP/MBAR RBFE

OK, so what does this mean?

ML/MM REPEX/ATM FEP/MBAR RBFE

molecular mechanics force field

ML/MM REPEX/ATM FEP/MBAR RBFE

hybrid machine learning / molecular mechanics force field

ML/MM REPEX/ATM FEP/MBAR RBFE

Free energy perturbation uses alchemical intermediates to compute binding free energies

Includes all contributions from enthallpy and entropy of binding to a flexible receptor

$$
\Delta G_{0 \rightarrow 1}=-k_{B} T \ln \frac{Z_{1}}{Z_{0}}=-k_{B} T \ln \frac{Z_{\lambda_{2}}}{Z_{\lambda_{1}}} \frac{Z_{\lambda_{3}}}{Z_{\lambda_{2}}} \cdots \frac{Z_{\lambda_{N}}}{Z_{\lambda_{N-1}}} \quad Z_{n}=\int d x e^{-\beta U_{n}(x)} \text { partition function }
$$

ALCHEMICAL FREE ENERGY CALCULATIONS HAVE A BROAD DOMAIN OF APPLICABILITY IN DRUG DISCOVERY

driving affinity / potency

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 https://doi.org/10.1021/acs.jcim.0c00900

driving selectivity

Moraca, Negri, de Olivera, Abel JCIM 2019
https://doi.org/10.1021/acs.jcim.9b00106
Aldeghi et al. JACS 139:946, 2017.
https://doi.org/10.1021/jacs.6b11467
predicting clinical drug resistance/sensitivity
Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang.
Communications Biology 1:70, 2018

https://doi.org/10.1038/s42003-018-0075-x
Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018
https://doi.org/10.1021/acscentsci.8600717

optimizing thermostability

Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016 https://doi.org/10.1002/anie. 201510054

FOLDED

...AND HOLD THE POTENTIAL FOR EVEN BROADER APPLICABILITY AS MORE STRUCTURAL DATA EMERGES

partition coefficients (logP, logD) and permeabilities
structure-enabled ADME/Tox targets
porin permeation
crystal polymorphs, etc.

ML/MM REPEX/ATM FEP/MBAR RBFE

Alchemical Transfer Method (ATM) defines alchemical intermediates in a surprisingly simple way:

$$
U(x ; \lambda)=(1-\lambda) \underset{\substack{\text { unmodified } \\ \text { potential }}}{U_{0}(x)}+\lambda \underset{\substack{\text { displaced ligand } \\ \text { potential }}}{U_{0}(x+\Delta x)}
$$

relative binding free energies

ATM works with molecular mechanics and machine learning force fields without any special changes!

ML/MM REPEX/ATM FEP/MBAR RBFE

replica exchange sampling of multiple alchemical states

Independent simulations

Easy to parallelize, but sampling problems at any λ can make calculations unreliable simple but dangerous due to poor sampling of conformational changes coupled to $\boldsymbol{\lambda}$

Replica exchange (REPEX)
Good sampling at any λ can rescue problems at other λ if good λ overlap reliable but communication heavy

Nonequilibrium methods

Less efficient than equilibrium calculations, but can work robustly and scalably if properly tuned cloud- and wall clock friendly

Schrödinger FEP+

Wang, Wu, Deng, Kim, ... Abel 2015
https://doi.org/10.1021/ja512751q
NAMD
Jiang, Thirman, Jo, Roux 2018
http://doi.org/10.1021/acs.jpcb.8b03277
OpenMM
Chodera, Shirts
https://doi.org/10.1063/1.3660669

pmx / gromacs

Aldeghi, Gapsys, de Groot 2018
https://doi.org/10.1021/acscentsci.8b00717
Orion NES! ○

ML/MM REPEX/ATM FEP/MBAR RBFE

Multistate Bennett Acceptance Ratio (MBAR) provides an optimal way to analyze data to estimate free energy differences

ML/MM REPEX/ATM FEP/MBAR RBFE

Relative Binding Free Energy (RBFE) calculations are a useful way to make decisions about which synthetically tractable molecules to make

Open Free Energy Consortium: https://openfree.energy/
Best Practices for Alchemical Free Energy Calculations
https://doi.org/10.33011\%2Flivecoms.2.1.18378

WE HAD PREVIOUSLY SEEN MM TO ML/MM CORRECTIONS HAD SHOWN SIGNIFICANT PROMISE...

```
MM (OPLS2.1 + CM1A-BCC charges)
Missing torsions from LMP2/cc-pVTZ(-f) QM calculations
SPC water
```

MM (OpenFF 1.0.0 "Parsley")
AMBER14SB protein force field TIP3P; Joung and Cheatham ions

QML/MM (OpenFF 1.0.0 + ANI2x) AMBER14SB protein force field TIP3P; Joung and Cheatham ions

Tyk2 benchmark system from Wang et al. JACS 137:2695, 2015
replica-exchange free energy calculations with perses replica-exchange free energy calculations with solute tempering (FEP/REST)

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify

ML/MM REPEX/ATM FEP/MBAR RBFE APPEARS TO WORK SURPRISINGLY WELL

significantly increased utility compared to GAFF2.11
ANI 2 x vs GAFF2.11 vs OPLS3e (FEP+) (ANI2x/GAFF used FF14SB/TIP3P for protein/solvent)

Zariquiey, Galvelis, Gallicchio, Chodera, Markland, and De Fabritiis
Enhancing protein-ligand binding affinity predictions using neural network potentials
JCIM 2024 (in press)

ML/MM REPEX/ATM FEP/MBAR RBFE CAN BE SURPRISINGLY FAST

OpenMM

RTX 4090 benchmarks

PDB ID	\# res	\# heavy atoms	$\begin{gathered} \text { OpenMM } \\ \text { ns/day } \\ \text { (4 fs timestep) } \end{gathered}$	TorchANI QML/MM ns/day (2 fs timestep)	OpenMM QML/MM* ns/day (2 fs timestep)
3BE9	328	48	995	14.0	151/74.2
2P95	286	50	1006	12.2	147 / 73.5
1HPO	198	64	1227	13.4	152 / 65.9
1 AJV	198	75	1382	12.6	155 / 60.1

* ANI ensemble size: 1 / 8

NNPOps library https://github.com/openmm/nnpops

* CUDA/CPU accelerated kernels
* API for inclusion in MD engines
* Ops wrappers for ML frameworks (PyTorch so far)
* Community-driven, package agnostic
$\sim 3 x$ slower than GPU MD right now, but need $2 x$ smaller timestep Notably, MD will not get much faster for small systems as hardware improves.

OPENMM 8 MAKES ML/MM SIMULATIONS INCREDIBLY EASY

```
conda install -c conda-forge openmm-ml
```

```
Use Amber 14SB and TIP3P-FB for the protein and solvent
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
# Use OpenFF for the ligand
from openmmforcefields.generators import SMIRNOFFTemplateGenerator
smirnoff = SMIRNOFFTemplateGenerator(molecules=molecules)
# Create an OpenMM MM system
mm_system = forcefield.createSystem(topology)
# Replace ligand intramolecular energetics with ANI-2x
potential = MLPotential('ani2x')
ml_system = potential.createMixedSystem(topology, mm_system, ligand_atoms)
```


ML POTENTIALS ARE NOT WITHOUT CHALLENGES. IT'S STILL EARLY DAYS.
 ~ A gallery of horrors ~

ANI2x proton cannon!

90-degree sulfonamides! Totally different amide torsions!

CAN HUMANITY SURVVE THE ATOMTIC NIGHMARE!

CAN WE CHANGE PRACTICE IN STRUCTURE-ENABLED DRUG DISCOVERY BY LEVERAGING DATA WE GENERATE?

2023	week 1							week 2							
	mow	vue	wio	ruv	${ }^{201}$	sar	sun	mon	ves	weo	тr	${ }^{*}$	${ }_{\text {sar }}$	sui	
	deatasm				nendata			deatasm	smbtest			nendsas			
	using published force field model							using the same published force field model! we haven't learned anything from the data							

"Insanity is doing the same thing over and over again and expecting different results" - Rita Mae Brown (not Albert Einstein)

CAN WE CHANGE PRACTICE IN STRUCTURE-ENABLED DRUG DISCOVERY BY LEVERAGING DATA WE GENERATE?

WHY DO WE NEED MM AT ALL?

Can we just use ML force fields for everything?

ML POTENTIALS CAN BE USED TO MODEL ENTIRE SYSTEMS IN FREE ENERGY CALCULATIONS

Potentials are free of singularities, so simple linear alchemical potentials can robustly compute alchemical free energies

$$
U(x ; \lambda)=(1-\lambda) U_{\lambda=0}(x)+\lambda U_{\lambda=1}(x)
$$

Simple restraints can be used when we need to enforce specific chemical species

We can even make and break bonds!

PURE ML POTENTIALS ARE NOT HIGHLY ACCURATE FOR CONDENSED PHASE PROPERTIES (YET), BUT CAN LEARN FROM DATA!

ML POTENTIALS TRAINED ONLY ON QM DATA OMIT QUANTUM NUCLEAR EFFECTS, WHICH ARE IMPORTANT FOR H-BONDS

We can fix this by including experimental condensed-phase data in our ML potential training, just like we do with MM force fields

ML POTENTIALS TRAINED ONLY ON QM DATA OMIT QUANTUM NUCLEAR EFFECTS, WHICH ARE IMPORTANT FOR H-BONDS

We can fix this by including experimental condensed-phase data in our ML potential training, just like we do with MM force fields

WE NEED FOUNDATION DATASETS

WE ARE BUILDING FOUNDATION QM DATASETS USEFUL FOR BUILDING AND ASSESSING ML AND MM MODELS

OpenMM SPICE v1 (2M QM snapshots)

- fragments of biomolecules (and their dimers)
- dipeptides
- ion pairs
- PubChem (15K molecules)
- Solvated amino acids

Subset	Molecules	Conformations	Atoms	Elements
Dipeptides	677	33850	$26-60$	$\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$
Solvated Amino Acids	26	1300	$79-96$	$\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$
DES370K Dimers	3490	345676	$2-34$	$\mathrm{H}, \mathrm{Li}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Na}, \mathrm{Mg}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{K}, \mathrm{Ca}$, Br, I
DES370K Monomers	374	18700	$3-22$	$\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
PubChem	14643	731856	$3-50$	$\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
Ion Pairs	28	1426	2	$\mathrm{Li}, \mathrm{F}, \mathrm{Na}, \mathrm{Cl}, \mathrm{K}, \mathrm{Br}, \mathrm{I}$
Total	19238	1132808	$2-96$	$\mathrm{H}, \mathrm{Li}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Na}, \mathrm{Mg}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{K}, \mathrm{Ca}$, Br, I

OpenMM SPICE v2 [nearly done]

- water clusters
- PubChem (B, Si)
- amino acid : ligand fragments from the PDB
- solvated PubChem subset

DFT ω B97M-D3(BJ)/def2-TZVPPD level of theory
>4M core-hours computed on QCFractal academic clusters also DFT B3LYP-D3BJ/DZVP (OpenFF default)

```
+ huge thanks to Prescient/Genentech (Josh Rackers)
and Exscientia
```


OpenMM SPICE v3 [planning]

- virtual synthetic spaces (Enamine REALSpace, etc.)
- More levels of theory
https://github.com/openmm/spice-dataset

THE THERMOML ARCHIVE FROM NIST PROVIDES A WEALTH OF PHYSICAL PROPERTY DATA FOR REFITTING LENNARD-JONES

Cooperating Journals
Journal of Chemical and Engineering Data (JCED)

The Journal of Chemical Thermodynamics (JCT)
Fluid Phase Equilibria (FPE)
Thermochimica Acta (TCA)
International Journal of Thermophysics (IJT)

General Info Data Summary Searching Info

NIST/TRC ThermoML Archive
Summary of ThermoML Archive data points through 2019 for all cooperating journals
The ThermoML Archive includes data through 2019 for all cooperating journals as present in TRC databases on the date 2020-09-30. The/ThermoML/Browse route, linked above in the navigation gray bar, provides browsing by journal issue or by property, collated for all journals, to the source of the data points. A summary of all data point counts collected for each journal, and then overall journals, may be browsed below by property group and name.

Journal	Data Sets	Data Points	Pure Data Sets	Pure Data Points	Binary Data Sets	Binary Data Points	Ternary Data Sets	Ternary Data Points	Reaction Data Sets	Reaction Data Points	Show Details
All Journals	123727	2692934	45855	563741	58302	1385778	18324	740838	1246	2577	Show Details
J. Chem. Eng. Data	57357	1285627	20604	272263	27487	632403	9141	380519	125	442	Show Details
J. Chem. Thermodyn.	36011	857345	14043	176330	16528	464525	4603	214812	837	1678	Show Details
Thermochim. Acta	8284	144269	4109	46674	3088	60471	814	36678	273	446	Show Details
Fluid Phase Equilib.	20531	364651	6241	57466	10635	203716	3647	103461	8	8	Show Details
Int. J. Thermophys.	1544	41042	858	11008	564	24663	119	5368	3	3	Show Details

WE NEED FOUNDATION MODELS

WE'VE ONLY SEEN THE FIRST STEPS TOWARD FOUNDATION ML POTENTIALS FOR SMALL MOLECULE DRUG DISCOVERY

ANI2x : 9M QM calculations, 7 elements ($\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{S}$)
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00121
AIMNet2 : 20M QM calculations, 14 elements, charged and neutral species
https://doi.org/10.26434/chemrxiv-2023-296ch
MACE-OFF23 : 2M QM calculations, trained on SPICE dataset (15 elements)
https://arxiv.org/abs/2312.15211

```
    openmm-ml: https://github.com/openmm/openmm-ml
    conda install -c conda-forge openmm-ml
from openmmml import MLPotential
potential = MLPotential('ani2x')
system = potential.createSystem(topology)
```


A NEW PARADIGM EMERGES

WHAT IS HOLDING FREE ENERGY CALCULATIONS BACK?

1. The forcefield may do a poor job of modeling the physics of our system (because it is constrained by choices made $\mathbf{4 0}$ years ago)

$$
V(\mathbf{q})=\sum_{\text {bonds }} K_{r}\left(r-r_{e q}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{e q}\right)^{2}+\sum_{\text {dihedrals }} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]+\sum_{i<j}\left[\frac{A_{i j}}{R_{i j}^{12}}-\frac{B_{i j}}{R_{i j}^{6}}+\frac{q_{i} q_{j}}{\epsilon R_{i j}}\right]
$$

2. We're missing some essential chemical in our simulations because we don't bother to model them (e.g. protonation states, tautomers, redox chemistry, PTMs, etc.))

3. We haven't sampled all of the relevant conformations because we can't simulate for long enough

ML POTENTIALS MAKE IT EASIER TO SOLVE THE OTHER CHALLENGES TOO!

1. The forcefield may do a poor job of modeling the physics of our system (because it is constrained by choices made $\mathbf{4 0}$ years ago)

$$
V(\mathbf{q})=\sum_{\text {bonds }} K_{r}\left(r-r_{e q}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{e q}\right)^{2}+\sum_{\text {dihedrals }} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]+\sum_{i<j}\left[\frac{A_{i j}}{R_{i j}^{12}}-\frac{B_{i j}}{R_{i j}^{6}}+\frac{q_{i} q_{j}}{\epsilon R_{i j}}\right]
$$

2. We're missing some essential chemical in our simulations because we don't bother to
mod Incredibly easy to implement constant-pH and related algorithms now that we don't have to worry about bookkeeping MM valence terms!
3. We haven't sampled all of the relevant conformations because we can't simulate for
long enough
We can turn generative models of protein conformation into clever Monte Carlo moves!

NOBODY LIKES THE CURRENT DRUG DISCOVERY PARADIGM

currently ~ 3.5 years, ~ 2000 compounds, $\$ 12.5 \mathrm{M}, \sim 50 \%$ success rate [1]

THERE ARE BETTER STRATEGIES WE COULD EXPLOIT IF OUR SIMULATIONS CAN LEARN FROM DATA

THERE'S THE POTENTIAL FOR A COMPLETELY NEW PARADIGM FOR DISCOVERY

What does it take to get here?

WE DON'T HAVE THE SCALE OF (EXPERIMENTAL) DATA TO DO THIS

Q: Who is the president during WWII? A: Franklin D. Roosevelt was the president during WWII.

OpenAl:
DALL-E 2 was trained on a dataset of $\mathbf{6 5 0}$ million images

GPT-3 was trained on a corpus of $\mathbf{2 2 . 5}$ billion pages of text (45 TB)

CADD:
Typical drug discovery programs make and test ~ 2000 compounds
PDBBind contains ~20K protein:ligand complexes

BigBind contains 538K measurements paired with structures

ChEMBL contains 2.4 M compounds, but it's a dumpster fire
...BUT IF WE HAVE A GOOD ENOUGH SIMULATOR (AND ENOUGH MONEY), WE CAN SIMULATE OUR WAY THERE.

SIMULATE \longrightarrow EMULATE \longrightarrow GENERATE

build accurate phyiscal biomolecular simulation models from limited QM + experimental data
build surrogate models
that accurately model
biomolecular simulations
build generative ML models that predict molecules conditioned on design goals

GENERATE

anNunchin
EMULATE

SIMULATE

