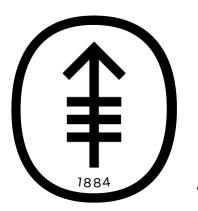
slides: http://choderalab.org/news

TEACHING FREE ENERGY CALCULATIONS TO LEARN



John D. Chodera

MSKCC Computational and Systems Biology Program http://choderalab.org

DISCLOSURES:

Scientific Advisory Board, OpenEye Scientific, Redesign Science*, Interline Therapeutics*, Ventus Therapeutics

All funding sources: http://choderalab.org/funding

* Denotes equity interests

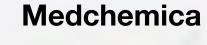
DESIGNING REAL DRUG CANDIDATES IS CHALLENGING

Target Product Profile (TPP) for oral SARS-CoV-2 main viral protease (Mpro) inhibitor

141901110		
Property	Target range	Rationale
protease assay	IC ₅₀ < 10 nM	Extrapolation from other anti-viral programs
viral replication assay	$EC_{50} < 5 \mu M$	Suppression of virus at achievable blood levels
plaque reduction assay	$EC_{50} < 5 \mu M$	Suppression of virus at achievable blood levels
route of administration	oral	bid/tid - compromise PK for potency if pharmacodynamic effect achieved
solubility	> 5 mg/mL	Aim for biopharmaceutical class 1 assuming <= 750 mg dose
half-life	> 8 h (human) est from rat and dog	Assume PK/PD requires continuous cover over plaque inhibition for 24 h max bid dosing
safety	Only reversible and monitorable toxicities No significant DDI - clean in 5 CYP450 isoforms hERG and NaV1.5 IC $_{50}$ > 50 μ M No significant change in QTc Ames negative No mutagenicity or teratogenicity risk	No significant toxicological delays to development DDI aims to deal with co-morbidities / therapies, cardiac safety for COVID-19 risk profile cardiac safety for COVID-19 risk profile Low carcinogenicity risk reduces delays in manufacturing Patient group will include significant proportion of women of childbearing age

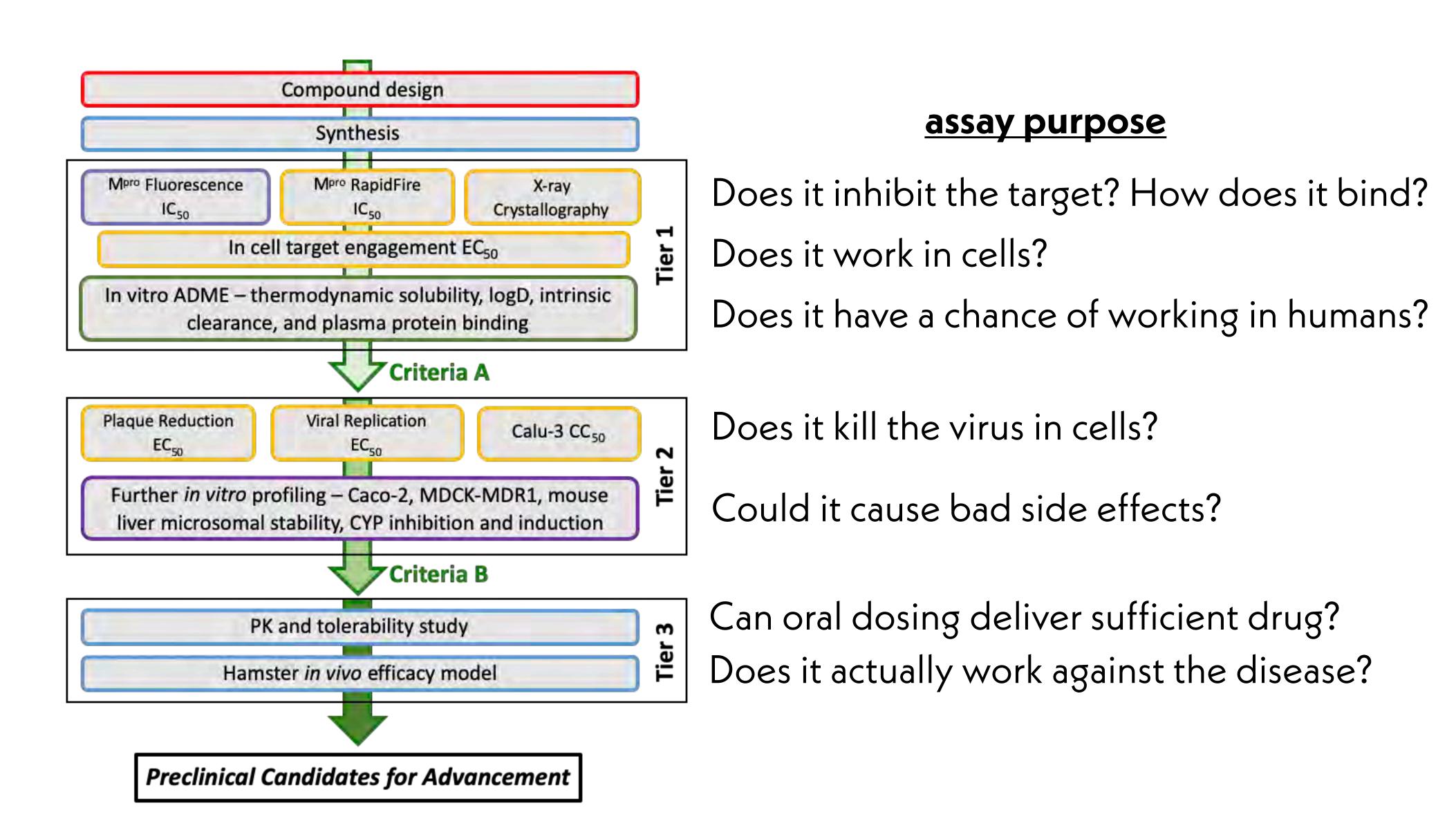


Ed Griffen

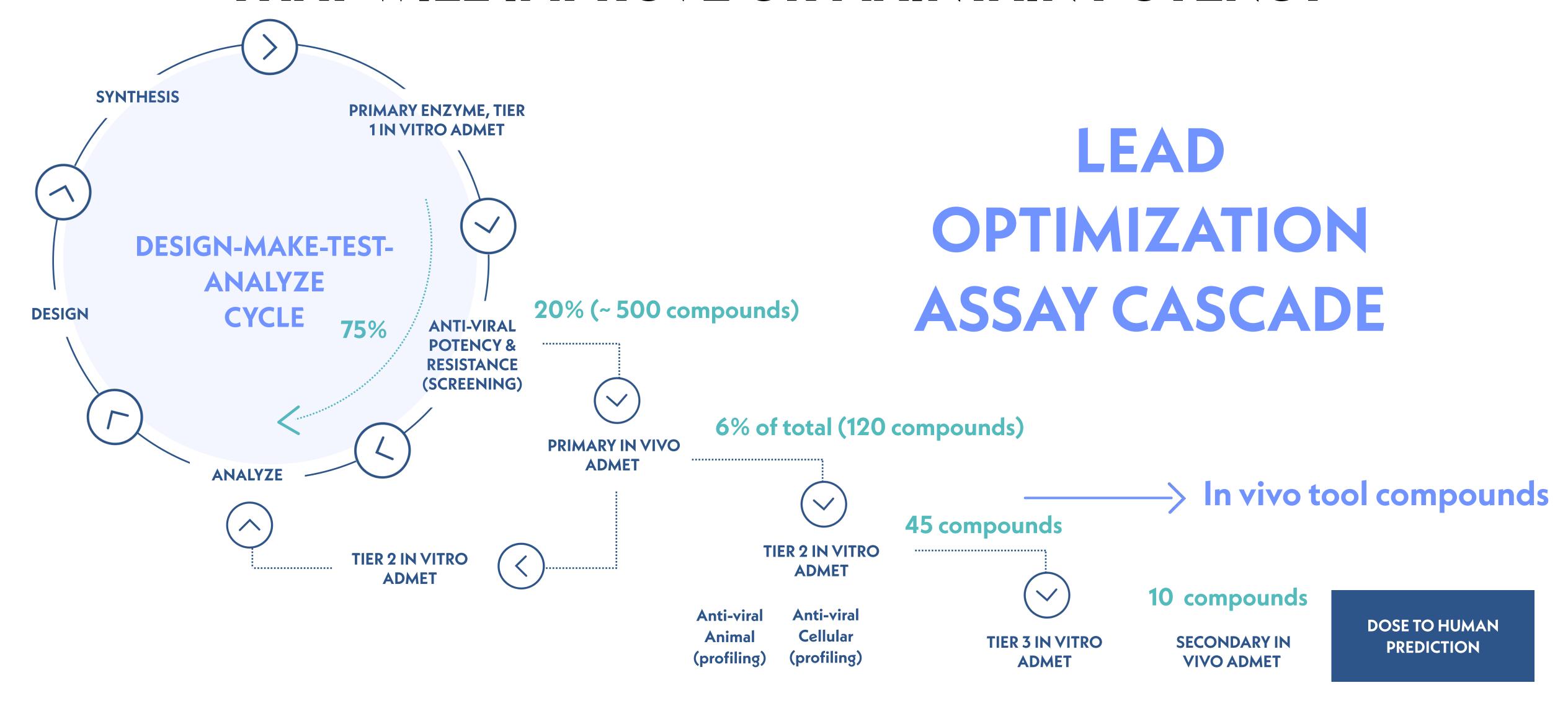


An international effort to **DISCOVER A COVID ANTIVIRAL**

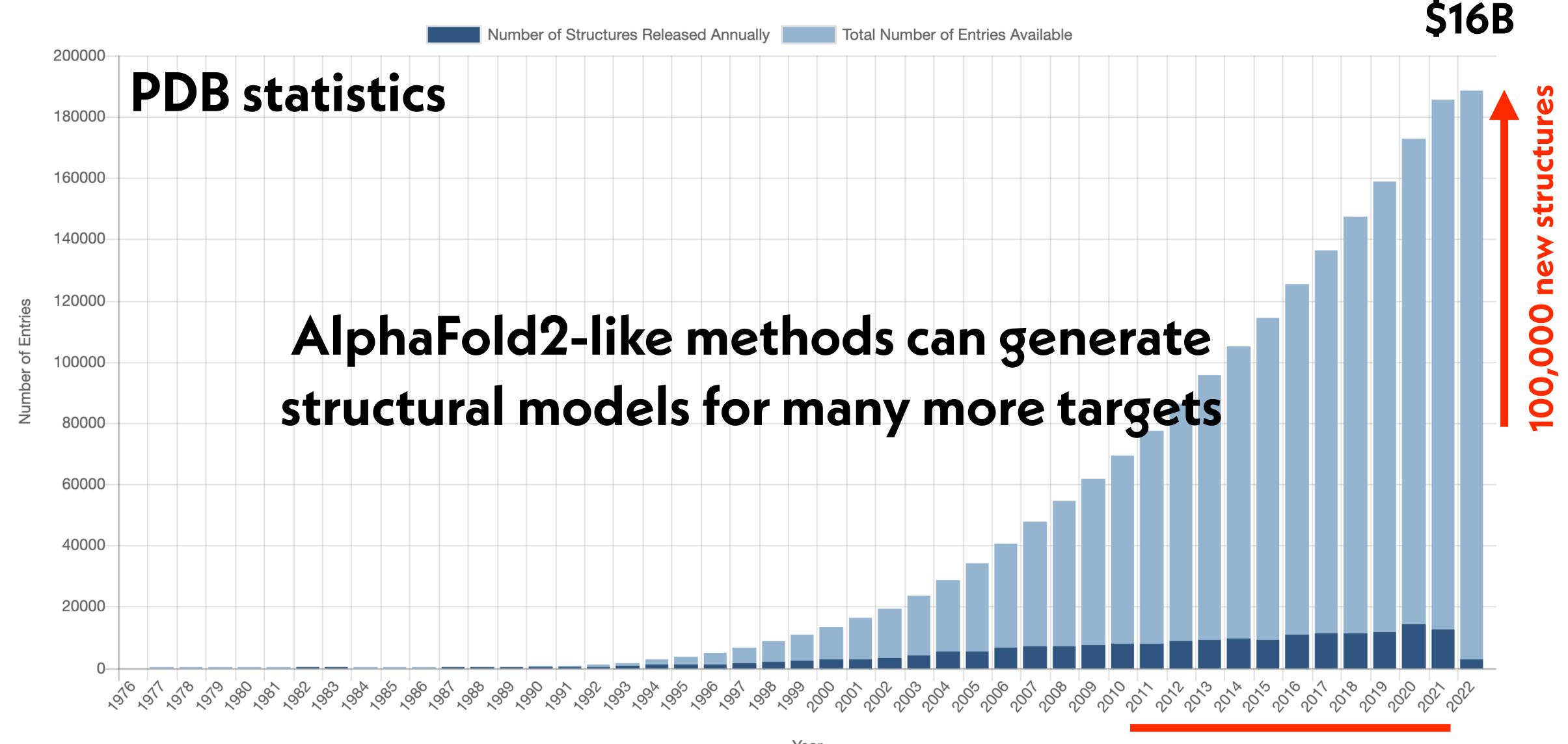
TO GET THERE, DRUG DESIGN INVOLVES MAKING A LOT OF DECISIONS ABOUT WHICH MOLECULES WILL ACHIEVE CERTAIN OBJECTIVES



MUCH OF THE TIME IS SPENT IN PREDICTING COMPOUNDS THAT WILL IMPROVE OR MAINTAIN POTENCY

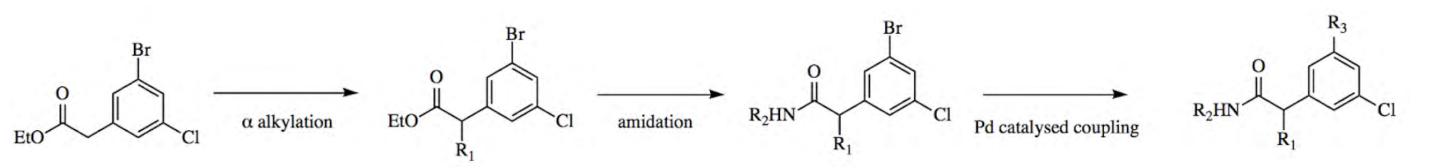


STRUCTURAL DATA IS NOW AN ABUNDANT RESOURCE FOR DRUG DISCOYERY

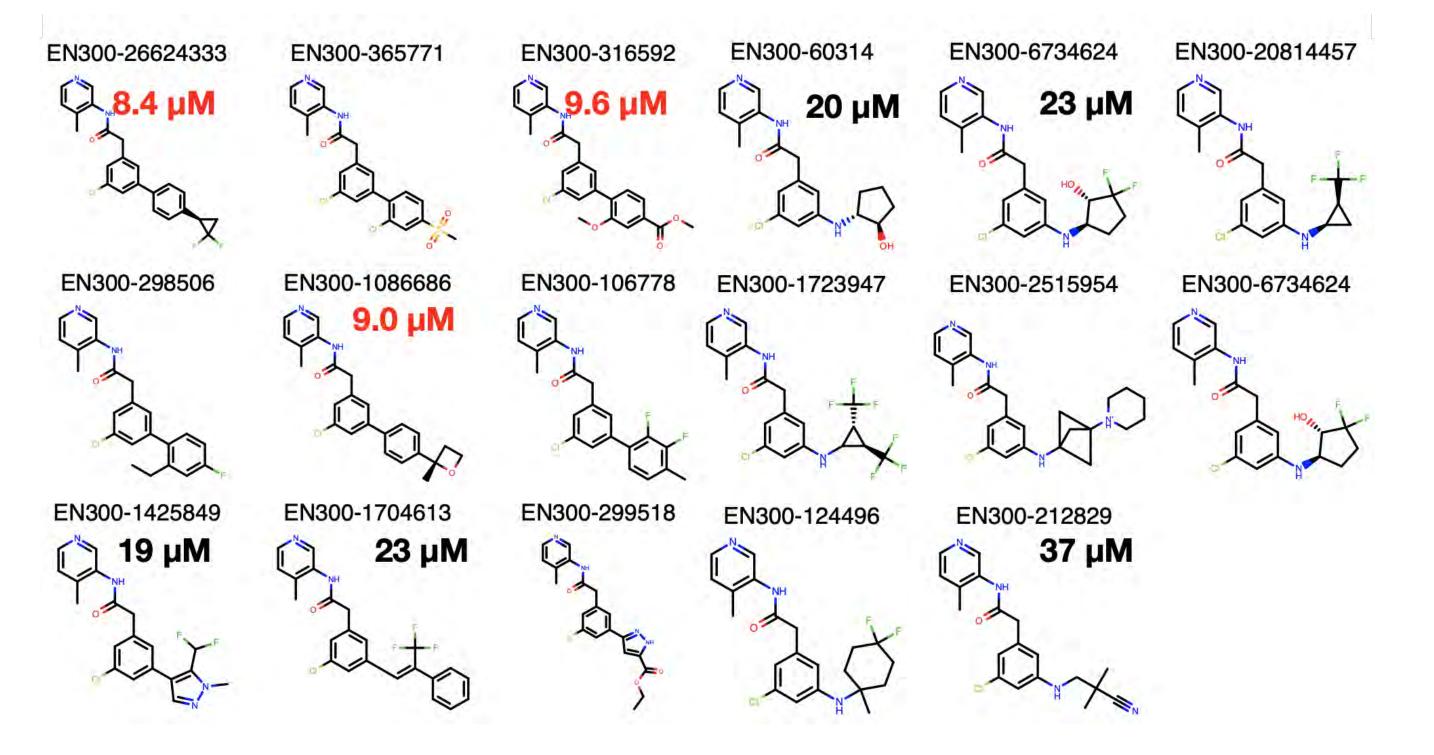


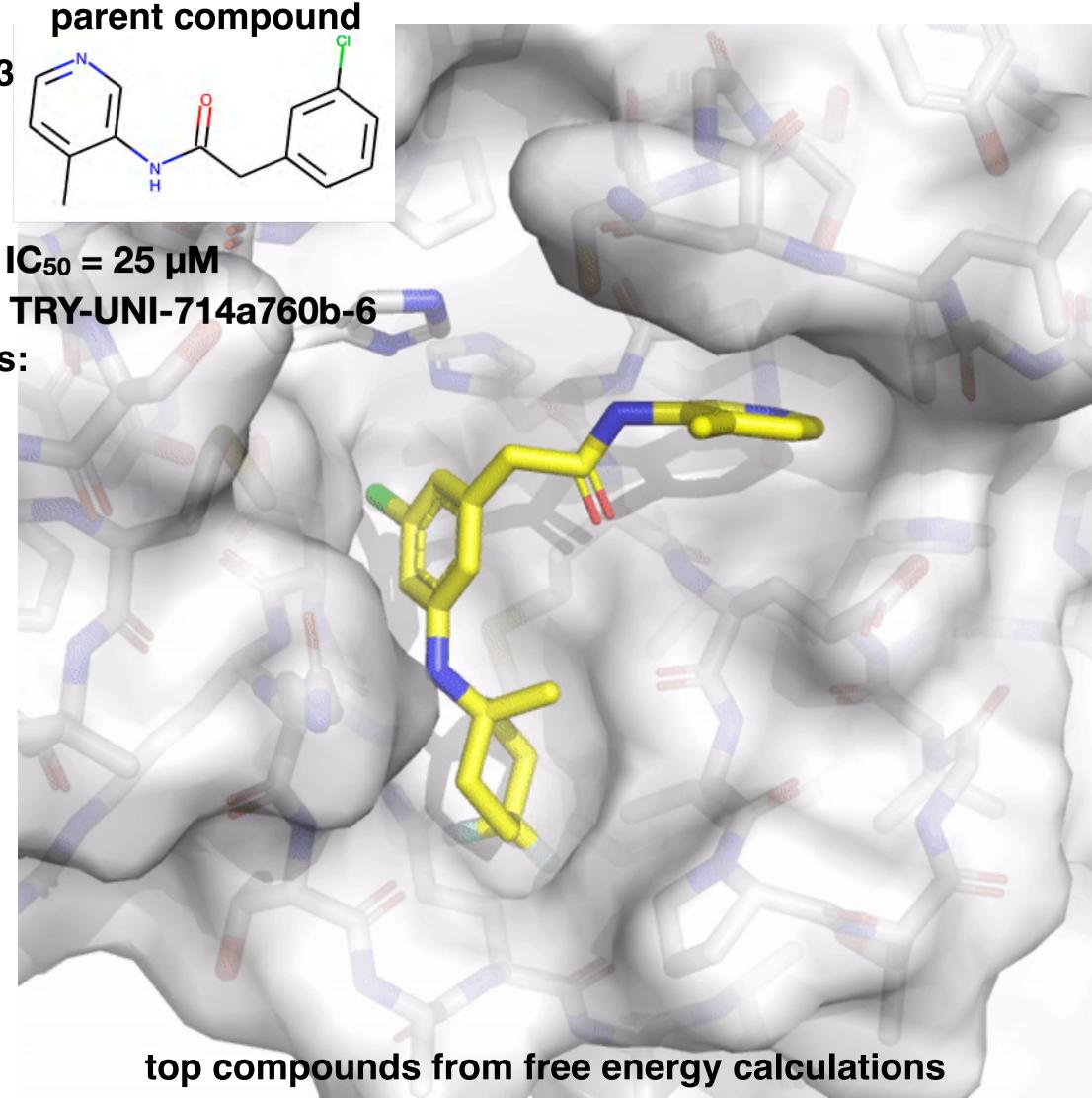
WE CAN LEVERAGE STRUCTURE TO MAKE DECISIONS BETWEEN MANY RELATED SYNTHETICALLY FEASIBLE ANALOGUES

Can we engage S4 from this 5,000-compound virtual synthetic library varying R3



Top free energy calculation compounds and experimental affinity measurements:

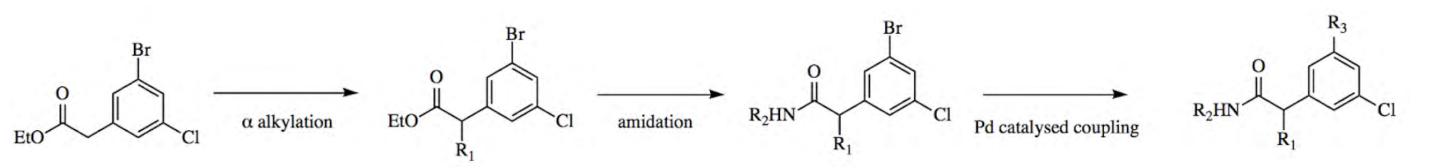




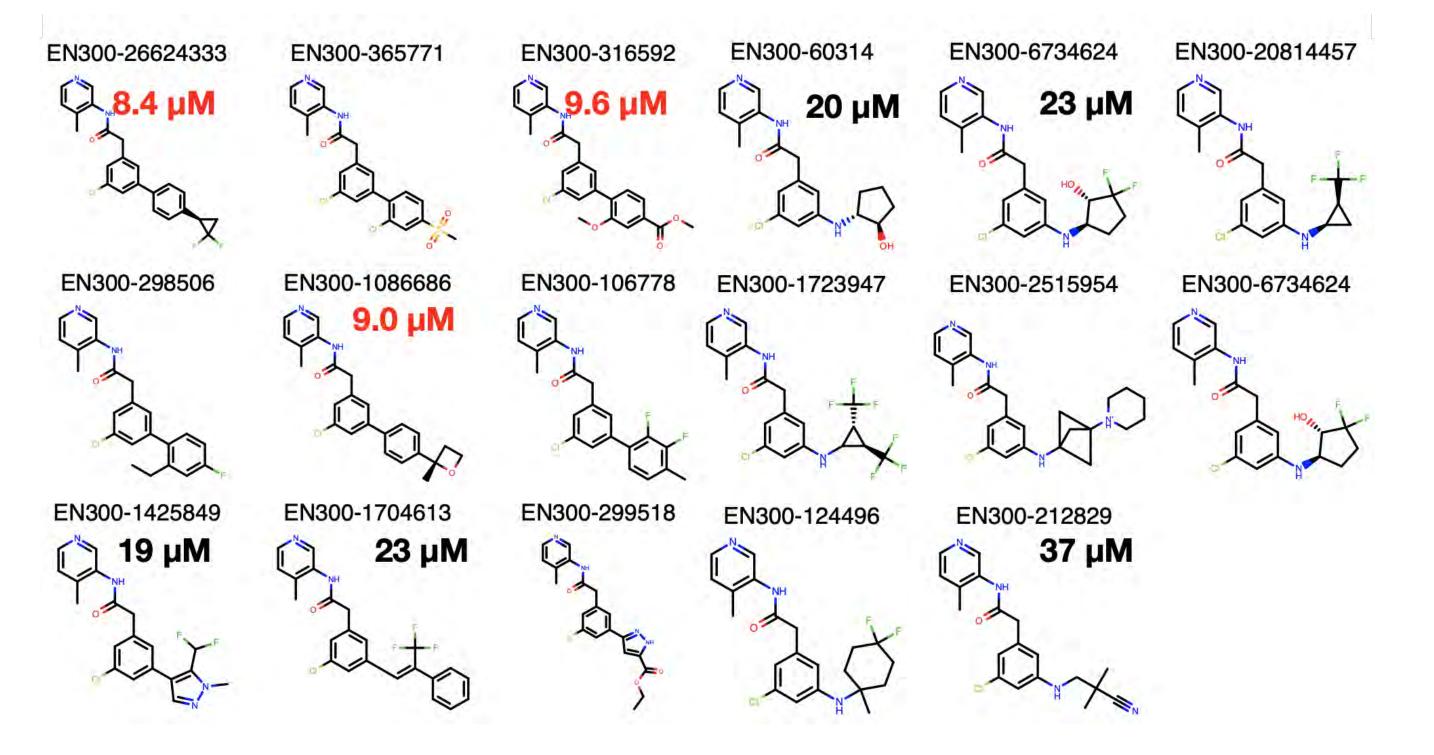
COVID Moonshot: [Moonshot] [Fragalysis] [Dashboard]

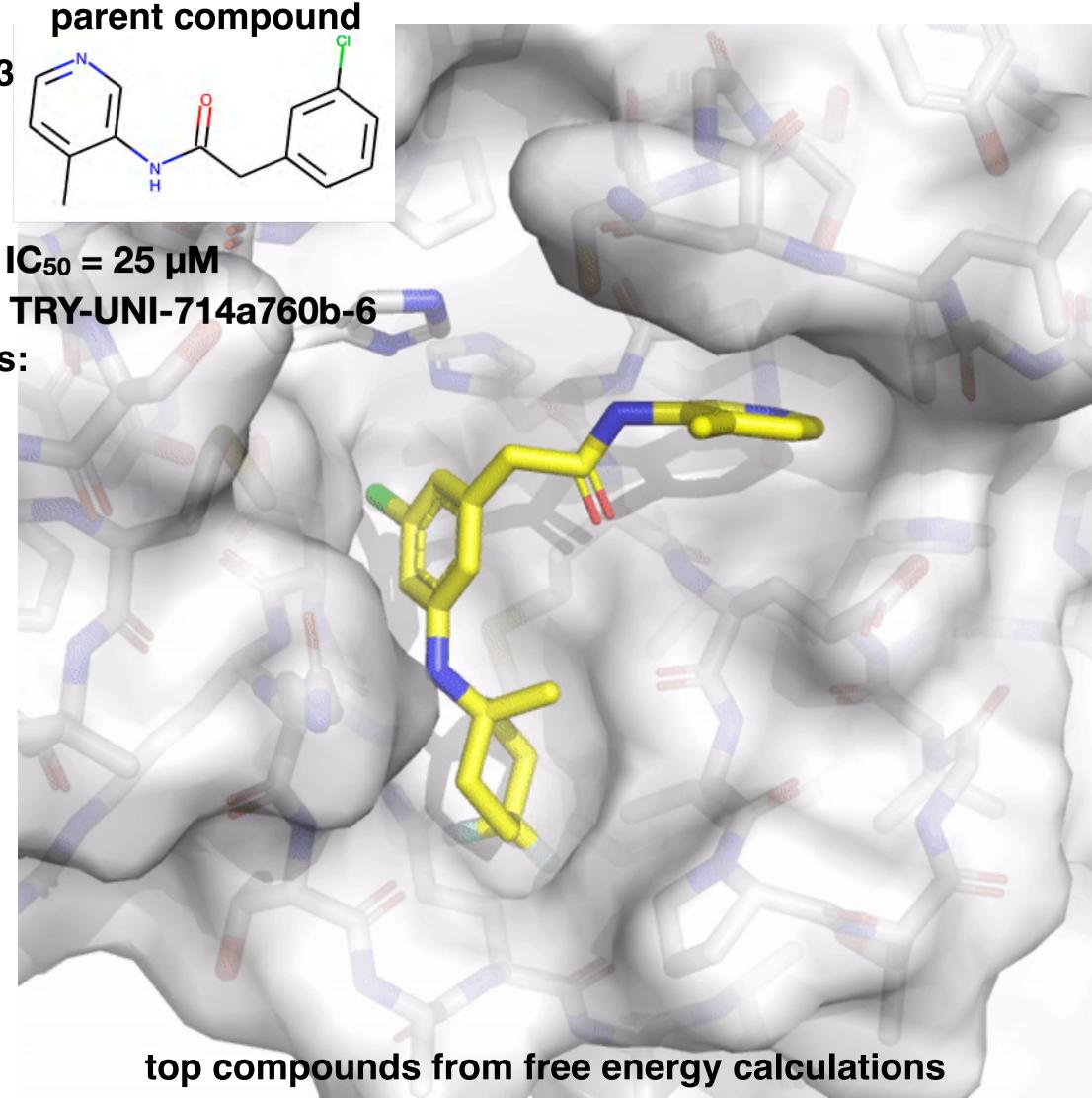
WE CAN LEVERAGE STRUCTURE TO MAKE DECISIONS BETWEEN MANY RELATED SYNTHETICALLY FEASIBLE ANALOGUES

Can we engage S4 from this 5,000-compound virtual synthetic library varying R3



Top free energy calculation compounds and experimental affinity measurements:

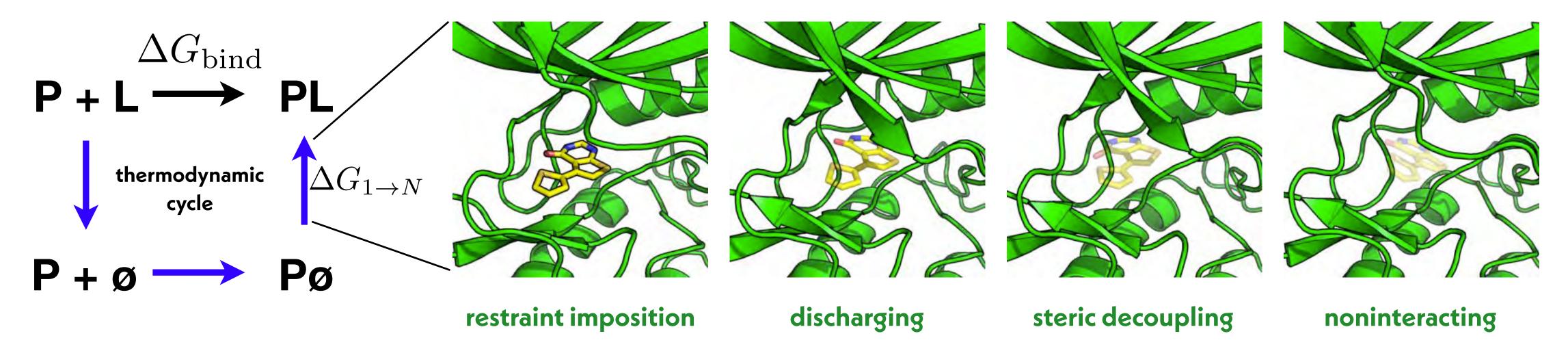




COVID Moonshot: [Moonshot] [Fragalysis] [Dashboard]

ALCHEMICAL FREE ENERGY CALCULATIONS HAVE PROVEN TO BE A USEFUL WAY TO EXPLOIT STRUCTURAL DATA TO PREDICT AFFINITIES

simulations of alchemical intermediates with attenuated interactions

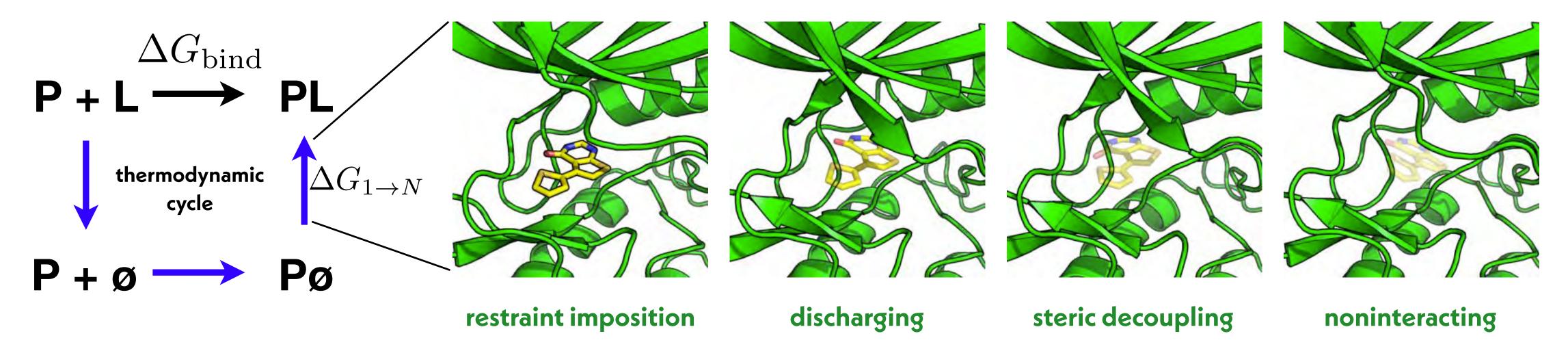


Includes all contributions from enthalpy and entropy of binding to a flexible receptor

$$\Delta G_{0\rightarrow 1} = -k_BT\ln\frac{Z_1}{Z_0} = -k_BT\ln\frac{Z_{\lambda_2}}{Z_{\lambda_1}}\frac{Z_{\lambda_3}}{Z_{\lambda_2}}\cdots\frac{Z_{\lambda_N}}{Z_{\lambda_{N-1}}} \qquad \qquad Z_n = \int dx\,e^{-\beta U_n(x)} \quad \text{partition function}$$

ALCHEMICAL FREE ENERGY CALCULATIONS HAVE PROVEN TO BE A USEFUL WAY TO EXPLOIT STRUCTURAL DATA TO PREDICT AFFINITIES

simulations of alchemical intermediates with attenuated interactions

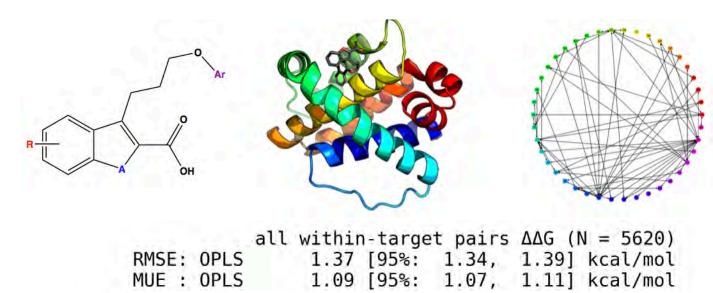


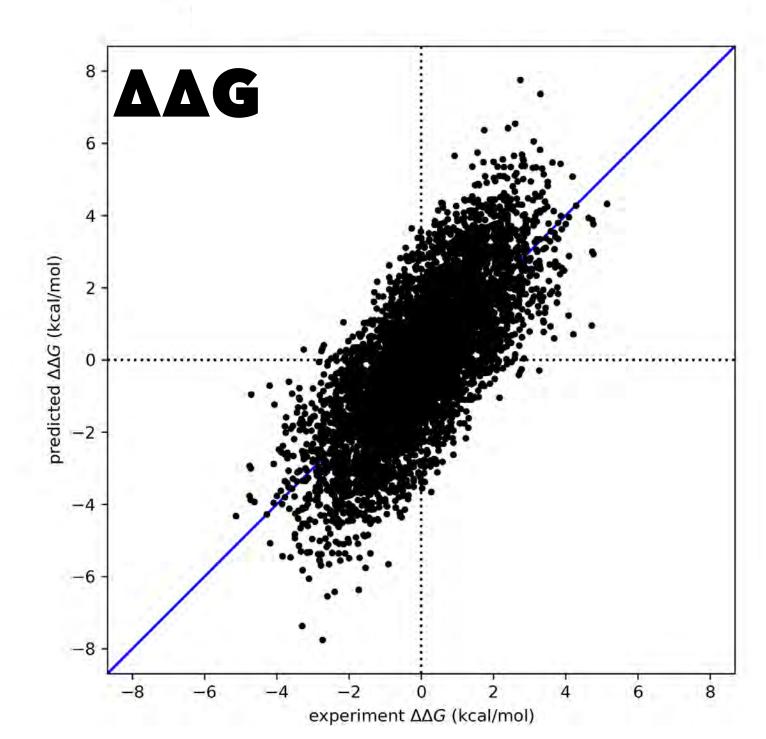
Includes all contributions from enthalpy and entropy of binding to a flexible receptor

$$\Delta G_{0\rightarrow 1} = -k_BT\ln\frac{Z_1}{Z_0} = -k_BT\ln\frac{Z_{\lambda_2}}{Z_{\lambda_1}}\frac{Z_{\lambda_3}}{Z_{\lambda_2}}\cdots\frac{Z_{\lambda_N}}{Z_{\lambda_{N-1}}} \qquad \qquad Z_n = \int dx\,e^{-\beta U_n(x)} \quad \text{partition function}$$

CURRENT ACCURACIES ARE SUFFICIENT TO ACCELERATE DISCOVERY, BUT HOW CAN WE GO FURTHER?

RELATIVE

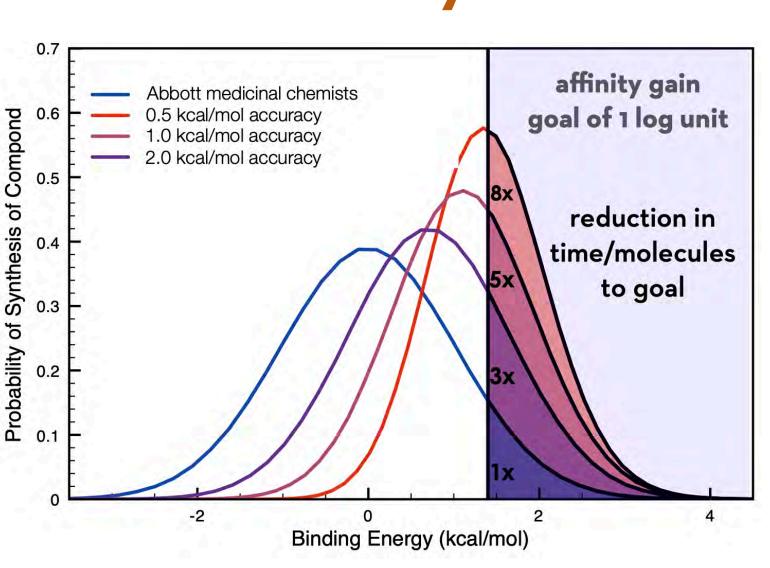




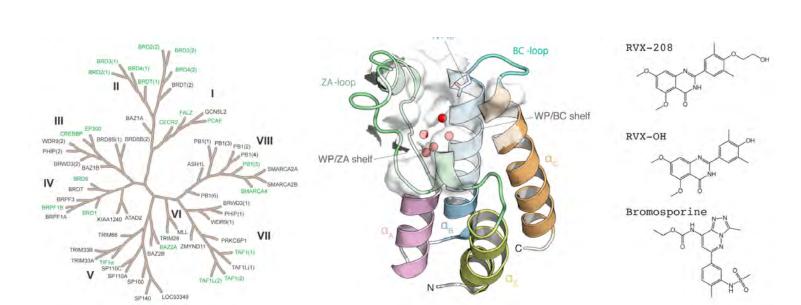
Wang et al. (Schrödinger) JACS 137:2695, 2015 https://doi.org/10.1021/ja512751q Reanalysis: http://github.com/jchodera/jacs-dataset-analysis

ΔΔG RMSE ~ 1.4 kcal/mol for well-behaved* proteins/chemistries:

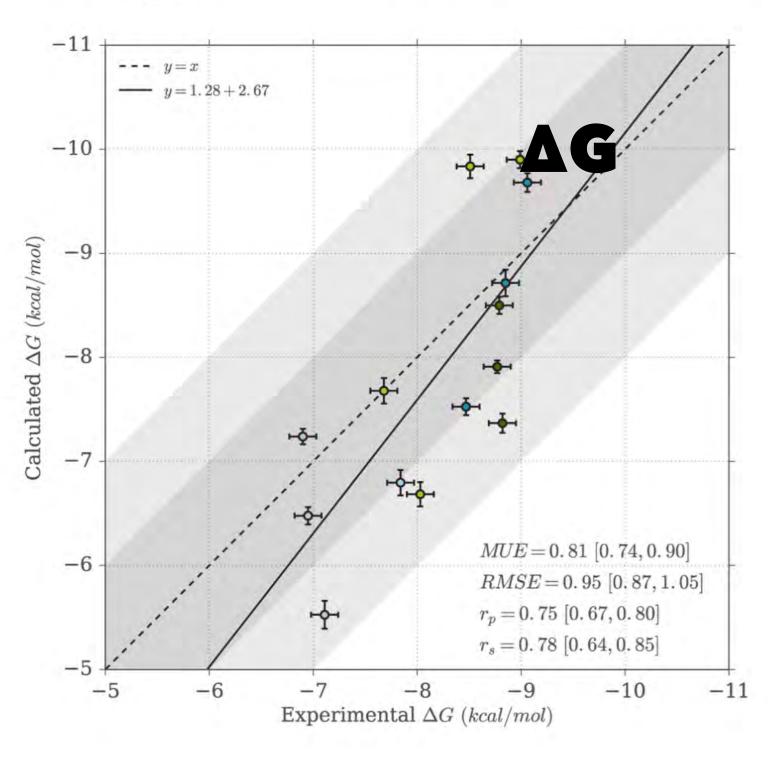
3-5x reduction in molecules synthesized



*best-case scenarios!



ABSOLUTE



ALCHEMICAL FREE ENERGY CALCULATIONS HAVE A BROAD DOMAIN OF APPLICABILITY IN DRUG DISCOVERY

driving affinity / potency

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 https://doi.org/10.1021/acs.jcim.0c00900

Moraca, Negri, de Olivera, Abel JCIM 2019 https://doi.org/10.1021/acs.jcim.9b00106 Aldeghi et al. JACS 139:946, 2017. https://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity

Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang. Communications Biology 1:70, 2018

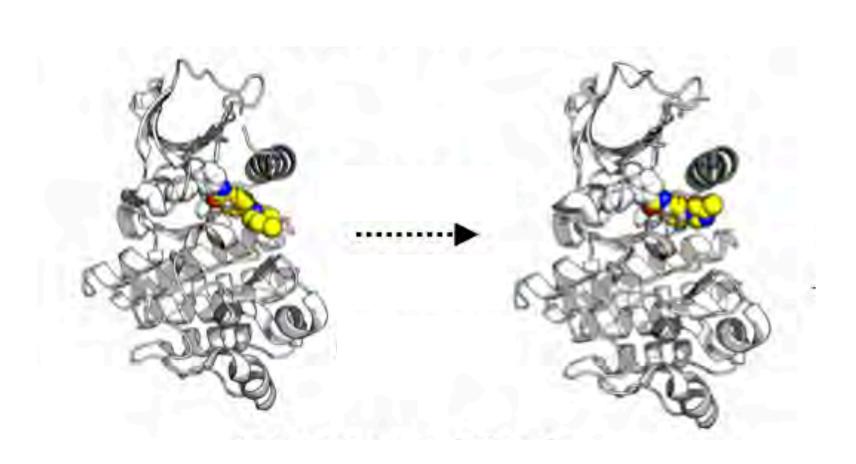
https://doi.org/10.1038/s42003-018-0075-x

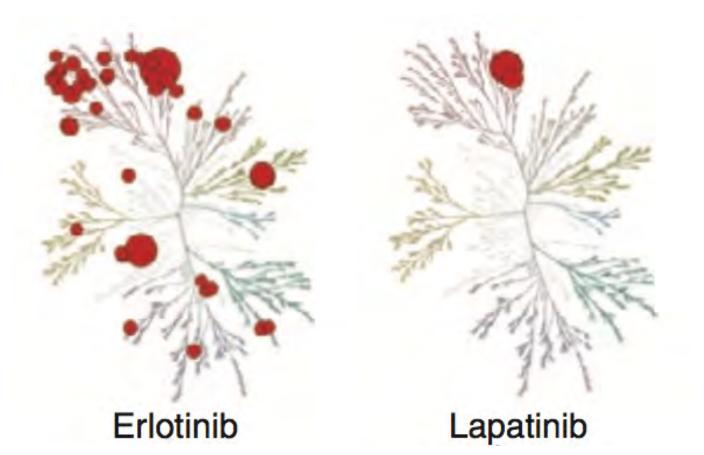
Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018

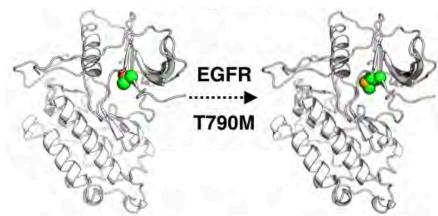
https://doi.org/10.1021/acscentsci.8b00717

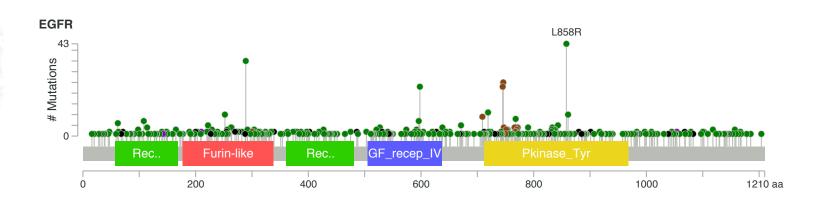
optimizing thermostability

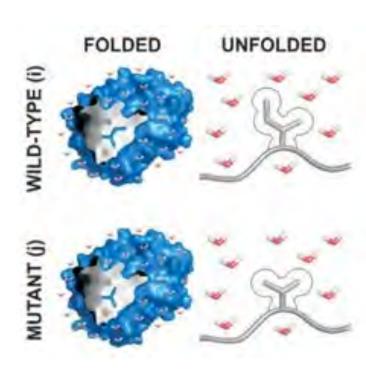
Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016 https://doi.org/10.1002/anie.201510054

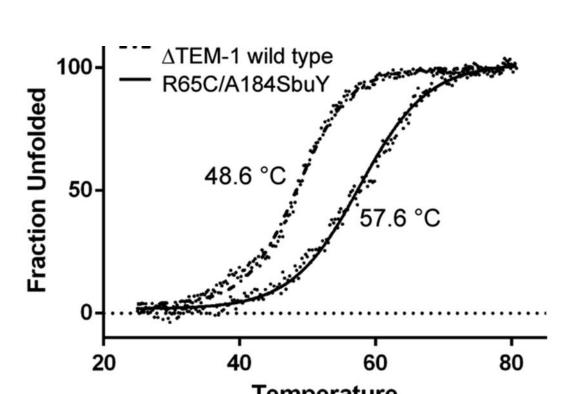












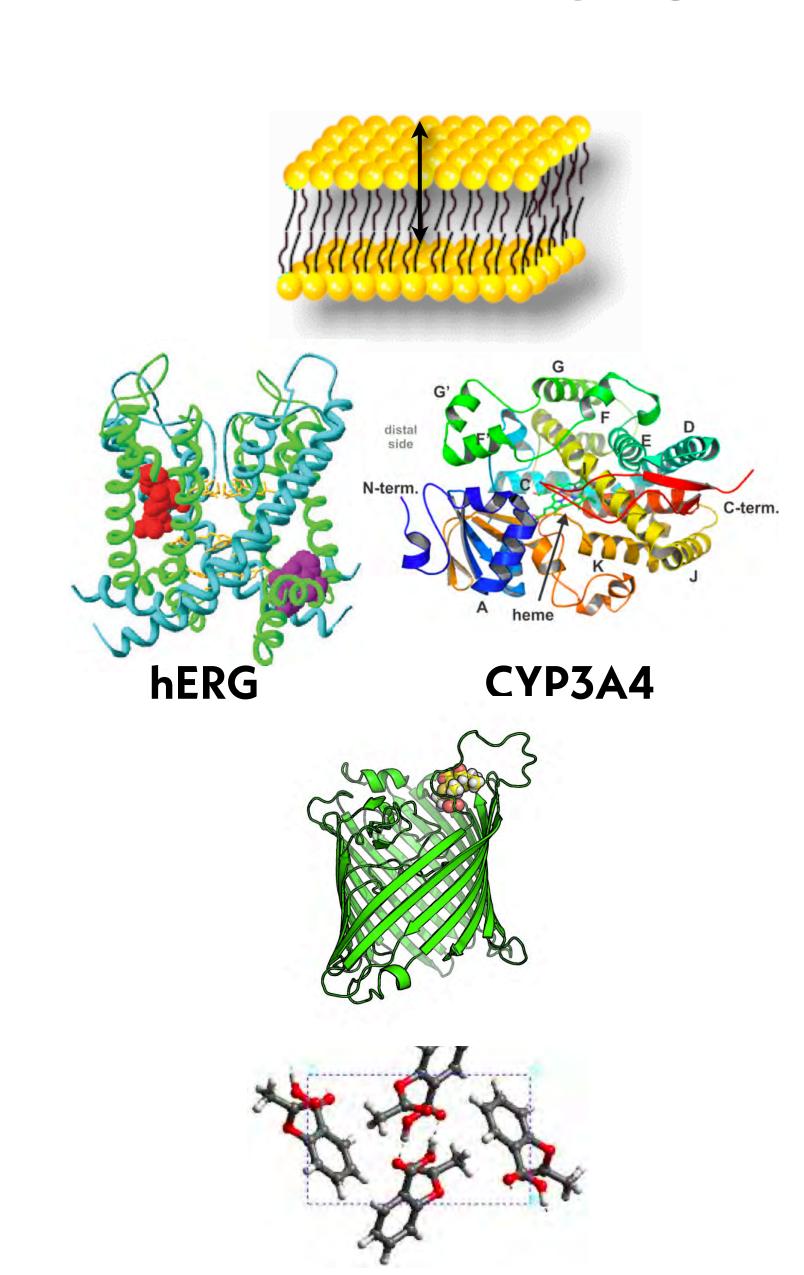
...AND HOLD THE POTENTIAL FOR EVEN BROADER APPLICABILITY AS MORE STRUCTURAL DATA EMERGES

partition coefficients (logP, logD) and permeabilities

structure-enabled ADME/Tox targets

porin permeation

crystal polymorphs, etc.



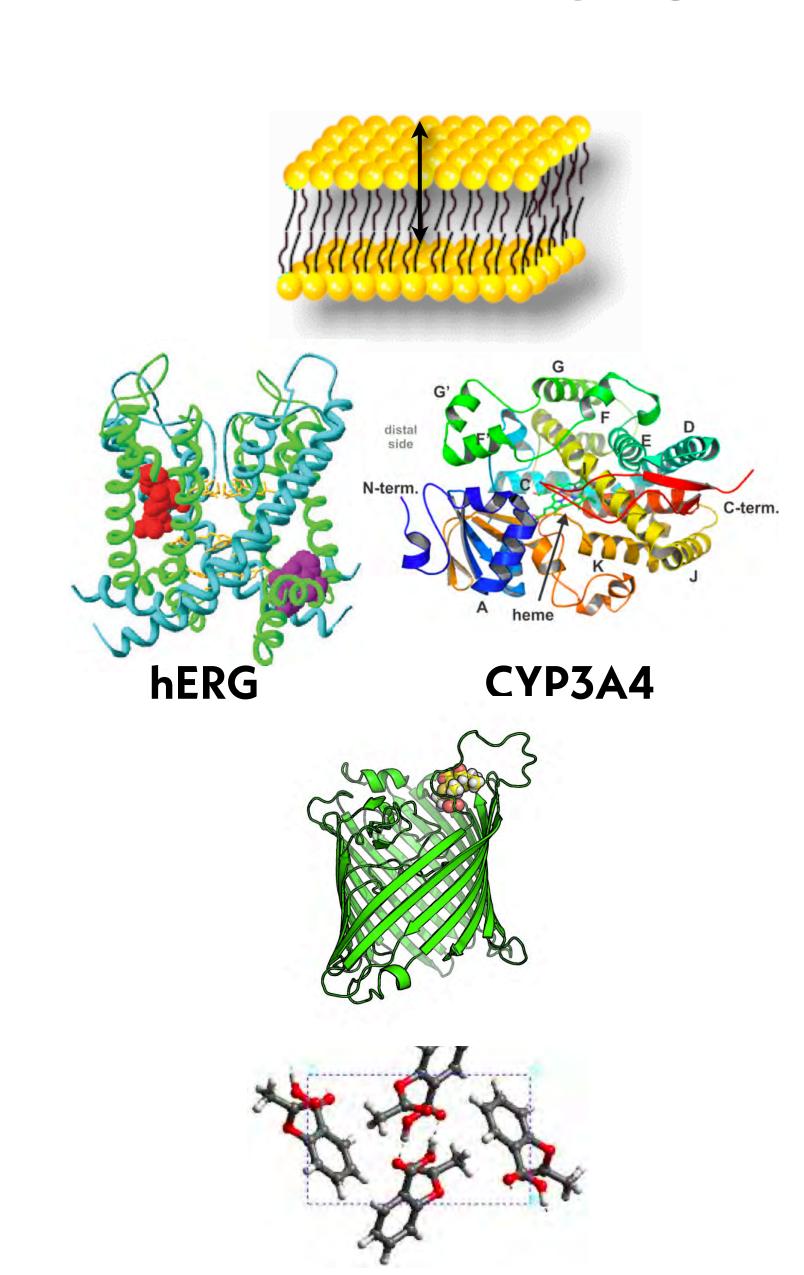
...AND HOLD THE POTENTIAL FOR EVEN BROADER APPLICABILITY AS MORE STRUCTURAL DATA EMERGES

partition coefficients (logP, logD) and permeabilities

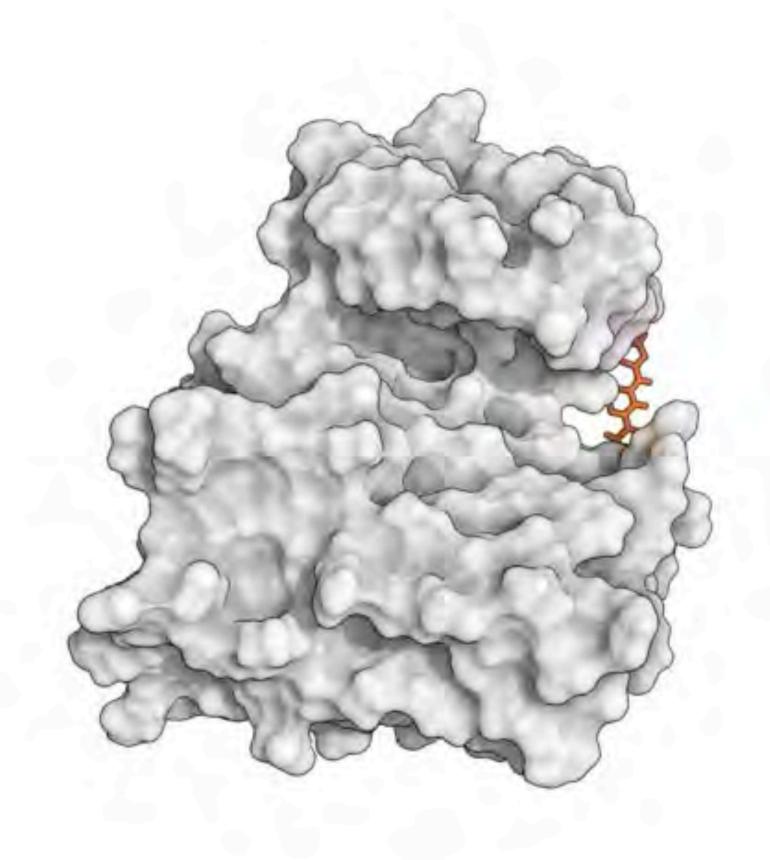
structure-enabled ADME/Tox targets

porin permeation

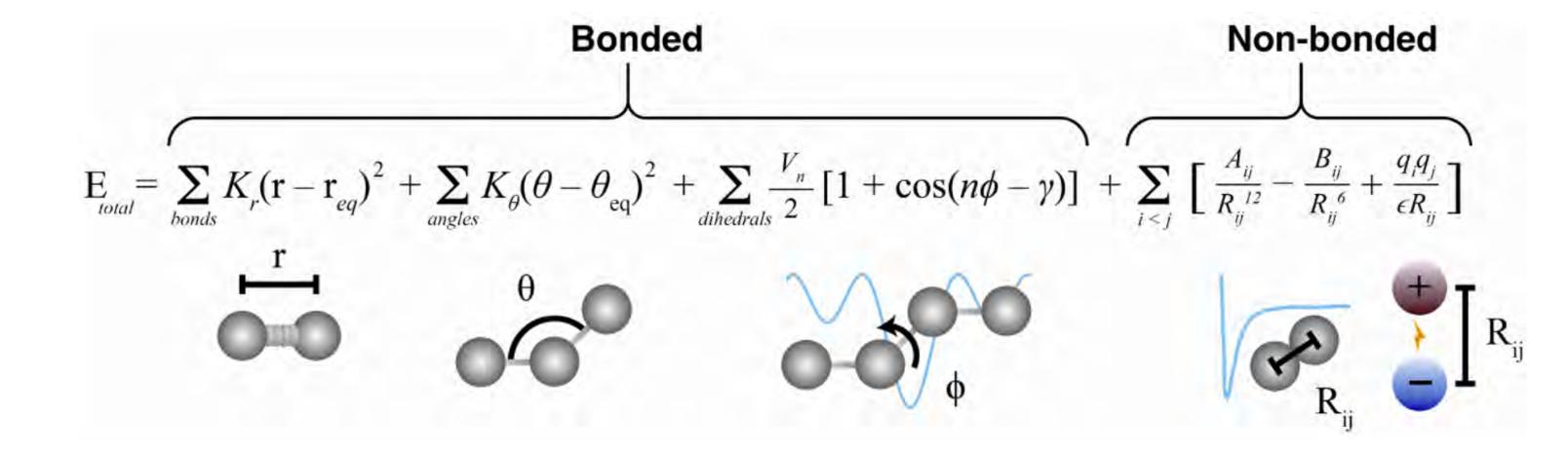
crystal polymorphs, etc.



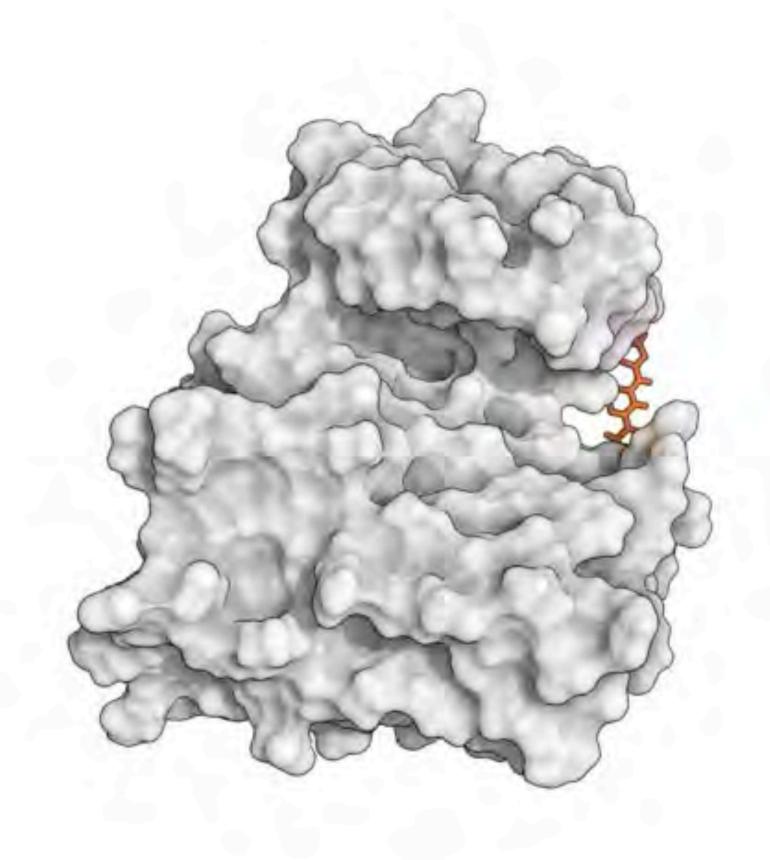
FREE ENERGY CALCULATIONS (AND MUCH OF COMP CHEM) CURRENTLY RELIES ON MOLECULAR MECHANICS FORCE FIELDS



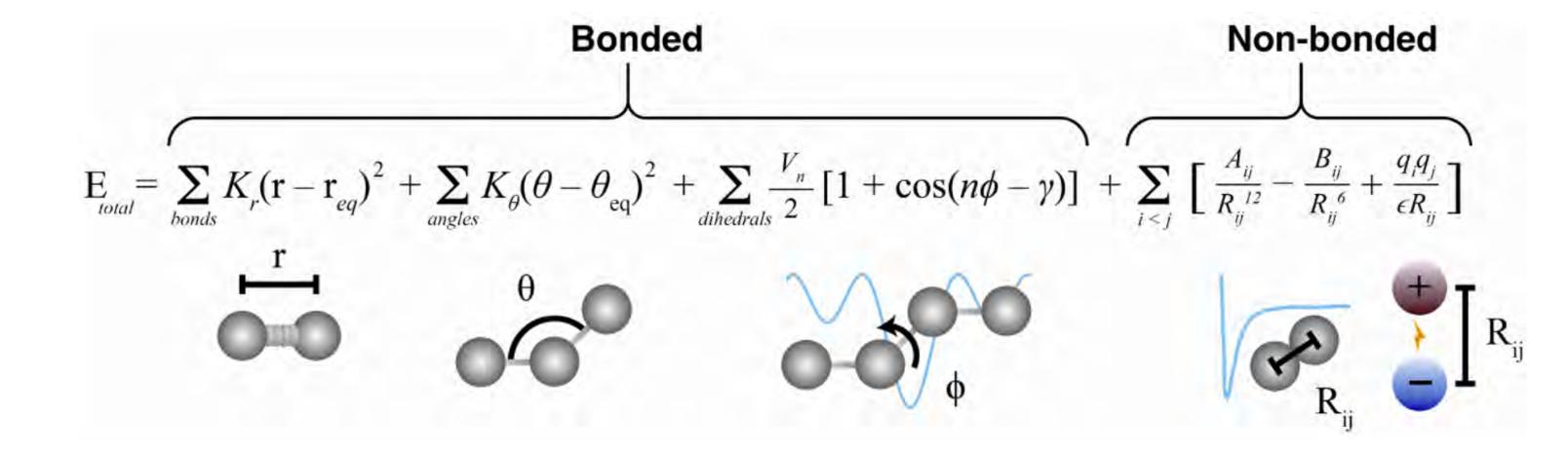
typical class I molecular mechanics force field



FREE ENERGY CALCULATIONS (AND MUCH OF COMP CHEM) CURRENTLY RELIES ON MOLECULAR MECHANICS FORCE FIELDS



typical class I molecular mechanics force field



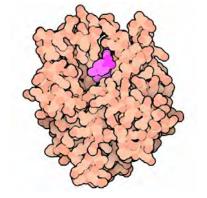
FORCE FIELDS HAVE TRADITIONALLY BEEN HEROIC PRODUCTS OF HUMAN EFFORT

experimental data quantum chemistry keen chemical intuition

heroic effort by graduate students and postdocs

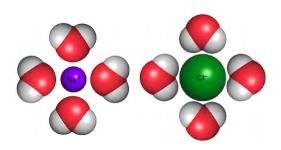
a parameter set we desperately hope someone actually uses

FORCE FIELDS HAVE TRADITIONALLY BEEN HEROIC PRODUCTS OF HUMAN EFFORT



proteins

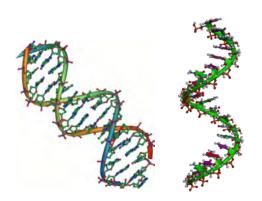
post-translational modifications



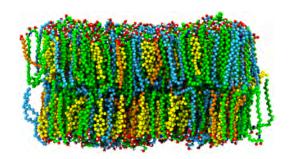
water

ions

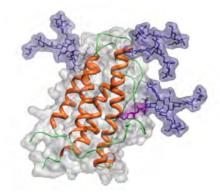
small molecules



nucleic acids



lipids



carbohydrates

Amber 20 recommendations

- J. A. Maier; C. Martinez; K. Kasavajhala; L. Wickstrom; K. E. Hauser; C. Simmerling. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J. Chem. Theory Comput.*, **2015**, *11*, 3696–3713.
- W. D. Cornell; P. Cieplak; C. I. Bayly; I. R. Gould; K. M. Merz, Jr.; D. M. Ferguson; D. C. Spellmeyer; T. Fox; J. W. Caldwell; P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. *J. Am. Chem. Soc.*, 1995, 117, 5179–5197.
- N. Homeyer; A. H. C. Horn; H. Lanig; H. Sticht. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006. 12, 281–289.
- H. W. Horn; W. C. Swope; J. W. Pitera; J. D. Madura; T. J. Dick; G. L. Hura; T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. *J. Chem. Phys.*, **2004**, *120*, 9665–9678.
- I. S. Joung; T. E. Cheatham, III. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. *J. Phys. Chem. B*, **2009**, *113*, 13279–13290.
- P. Li; B. P. Roberts; D. K. Chakravorty; K. M. Merz, Jr. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. *J. Chem. Theory Comput.*, **2013**, *9*, 2733–2748.
- J. Wang; R. M. Wolf; J. W. Caldwell; P. A. Kollamn; D. A. Case. Development and testing of a general Amber force field. *J. Comput. Chem.*, **2004**, *25*, 1157–1174.
- R. Galindo-Murillo; J. C. Robertson; M. Zgarbovic; J. Sponer; M. Otyepka; P. Jureska; T. E. Cheatham. Assessing the Current State of Amber Force Field Modifications for DNA. *J. Chem. Theory Comput.*, **2016**, 12, 4114–4127
- A. Perez; I. Marchan; D. Svozil; J. Sponer; T. E. Cheatham; C. A. Laughton; M. Orozco. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. *Biophys. J.*, **2007**, *92*, 3817–3829.
- M. Zgarbova; M. Otyepka; J. Sponer; A. Mladek; P. Banas; T. E. Cheatham; P. Jurecka. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. *J. Chem. Theory Comput.*, **2011**, *7*, 2886–2902.
- Å. Skjevik; B. D. Madej; R. C. Walker; K. Teigen. Lipid11: A modular framework for lipid simulations using amber. *J. Phys. Chem. B*, **2012**, *116*, 11124–11136.
- C. J. Dickson; B. D. Madej; A. A. Skjevik; R. M. Betz; K. Teigen; I. R. Gould; R. C. Walker. Lipid14: The Amber Lipid Force Field. *J. Chem. Theory Comput.*, **2014**, *10*, 865–879.
- K. N. Kirschner; A. B. Yongye; S. M. Tschampel; J. González-Outeiriño; C. R. Daniels; B. L. Foley; R. J. Woods. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. *J. Comput. Chem.*, 2008, 29, 622–655.

FORCE FIELDS HAVE TRADITIONALLY BEEN HEROIC PRODUCTS OF HUMAN EFFORT

proteins

post-translational modifications

Quickly adds up to >100 h

Amber 20 recommendations

J. A. Maier; C. Martinez; K. Kasavajhala; L. Wickstrom; K. E. Hauser; C. Simmerling. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput.,

W. D. Cornell; P. Cieplak; C. I. Bayly; I. R. Gould; K. M. Merz, Jr.; D. M. Ferguson; D. C. Spellmeyer; one years on force field for the simulation of proteins, nucleic

A. H. C. Horn; H. Lang; H. Sticht. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohisti-

H. W. Horn; W. C. Swope; J. W. Pitera; J. D. Madura; T. J. Dick; G. L. Hura; T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 2004, 120,

Intended to be compatible, but not co-parameter Zedic ion parameters. J. Phys. Chem. B, 2009, 113, 13279-

Significant effort is required to extend to news areas areas at ions in Explicit Solvent. J. Chem. Theory Comput., 2013, 9,

(e.g. covalent inhibitors, bio-inspired polymers, etc.), 1157-1174.

Nobody is going to want to refit this based on some new data. J. Chem. Theory Comput., 2016,

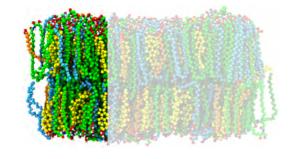
A. Perez; I. Marchan; D. Svozil; J. Sponer; T. E. Cheatham; C. A. Laughton; M. Orozco. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. Biophys.

M. Zgarbova; M. Otyepka; J. Sponer; A. Mladek; P. Banas; T. E. Cheatham; P. Jurecka. Refinement of the

Å. Skjevik; B. D. Madej; R. C. Walker; K. Teigen. Lipid11: A modular framework for lipid simulations using amber. J. Phys. Chem. B, 2012, 116, 11124-11136.

C. J. Dickson; B. D. Madej; A. A. Skjevik; R. M. Betz; K. Teigen; I. R. Gould; R. C. Walker. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput., 2014, 10, 865–879.

K. N. Kirschner; A. B. Yongye; S. M. Tschampel; J. González-Outeiriño; C. R. Daniels; B. L. Foley; R. J. Woods. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem., 2008, 29 622-655



lipids

How can we bring this problem into the modern era?



carbohydrates

AS DRUG DISCOVERY EXPLORES NEW PARTS OF CHEMICAL SPACE, HOW CAN FORCEFIELDS KEEP UP?

The Generalized Amber Forcefield (GAFF) only understands this space of chemistries:

GAFF 1 was finished in 1999, still awaiting GAFF 2 completion

Extension to new chemical space is nontrivial

Parameter fitting code was never released

Atom types have introduced numerous errors

CAN WE MAKE BUILDING BIMOLECULAR FORCE FIELDS AS EASY AS TRAINING A MACHINE LEARNING MODEL?

training a neural network

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
                Try in Google's interactive notebook
  Run code now
```

import your tools

grab a standard, curated dataset

define a novel model architecture

declare your objectives in training it fit it use it

https://www.tensorflow.org/overview

CAN WE MAKE BUILDING BIMOLECULAR FORCE FIELDS AS EASY AS TRAINING A MACHINE LEARNING MODEL?

training a neural network

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
                 Try in Google's interactive notebook
  Run code now
```

https://www.tensorflow.org/overview

fitting a force field

```
0
import openforcefield as off
training_data, benchmark_data = off.datasets.load('2019-Q1')
force_field_model = off.models.ForceFieldModel([
    off.models.forces.HarmonicBond(),
    off.models.forces.HarmonicAngle(),
    off.models.forces.PeriodicTorsion(max_order=6),
    off.models.forces.LennardJones(),
    off.models.forces.BondChargeCorrections(),
])
model.compile(optimizer='L-BFGS',
     loss='error-weighted',
     metrics=['accuracy'])
model.fit(training_data)
model.evaluate(test_data)
                  Try in Google's interactive notebook
  Run code now
```


An open and collaborative approach to better force fields

OPEN SOURCE

Software permissively licensed under the MIT License and developed openly on GitHub.

OPEN SCIENCE

Scientific reports as blog posts, webinars and preprints

OPEN DATA

Curated quantum chemical and experimental datasets used to parameterize and benchmark Open Force Fields.

NEWS

TUTORIALS

ROADMAP

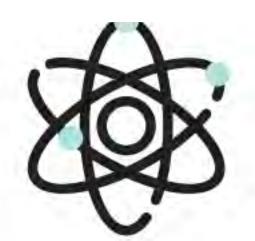
http://openforcefield.org

THE OPEN FORCE FIELD INITIATIVE AIMS TO BUILD A MODERN INFRASTRUCTURE FOR FORCE FIELD SCIENCE

Open source Python Toolkit: use the parameters in most simulation packages

Open curated QM / physical property datasets: build your own force fields MolSSI QCArchive quantum chemical data: http://qcarchive.molssi.org

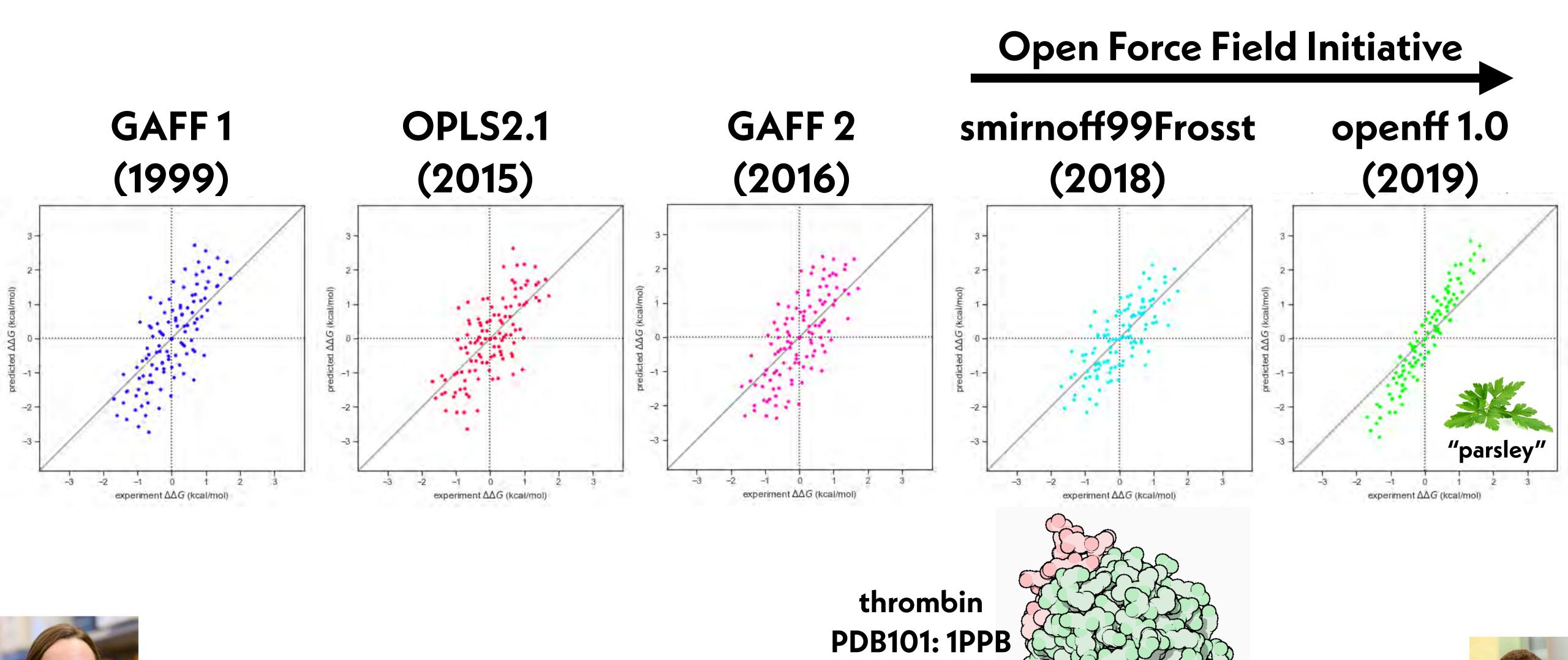
Open source infrastructure: for improving force fields with in-house data



Open science: everything we do is free, permissively licensed, and online

http://openforcefield.org

WE'VE MADE RAPID AND SIGNIFICANT PROGRESS IN ACCURACY, BUT WE'RE STILL STICK WITH SLOW GENERATIONS



HANNAH BRUCE MACDONALD

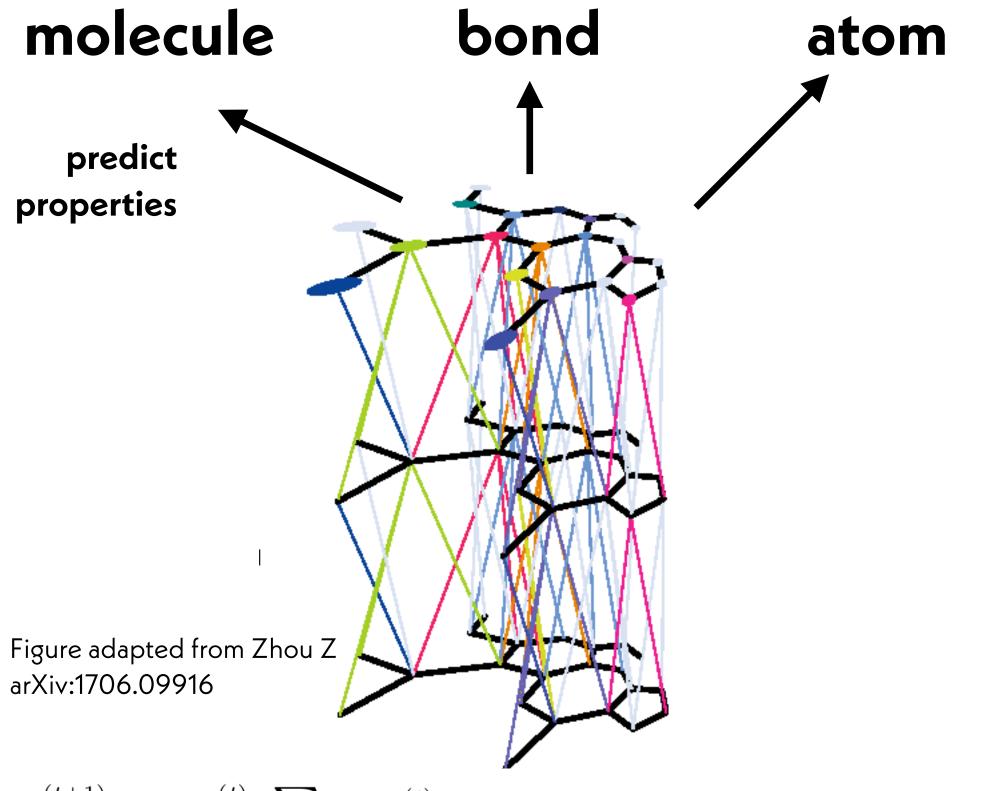
MSKCC

ht

http://github.com/choderalab/perses

DOMINIC RUFA

NEW GENERATIONS OF MACHINE LEARNING MODELS ARE PARTICULARLY WELL-SUITED TO CHEMISTRY



 $\bar{\mathbf{e}}_i^{(t+1)} = \rho^{e \to v}(E_i^{(t+1)}),$

 $\mathbf{v}_i^{(t+1)} = \phi^v(\bar{\mathbf{e}}_i^{(t+1)}, \mathbf{v}_i^{(t)}, \mathbf{u}^{(t)}),$

 $\bar{\mathbf{e}}^{(t+1)} = \rho^{e \to u}(E^{(t+1)}),$

 $\bar{\mathbf{v}}^{(t+1)} = \rho^{v \to u}(V^{(t)}),$

 $\mathbf{u}^{(t+1)} = \phi^u(\bar{\mathbf{e}}^{(t+1)}, \bar{\mathbf{v}}^{(t+1)}, \mathbf{u}^{(t)}),$

(edge update)

(edge to node aggregate)

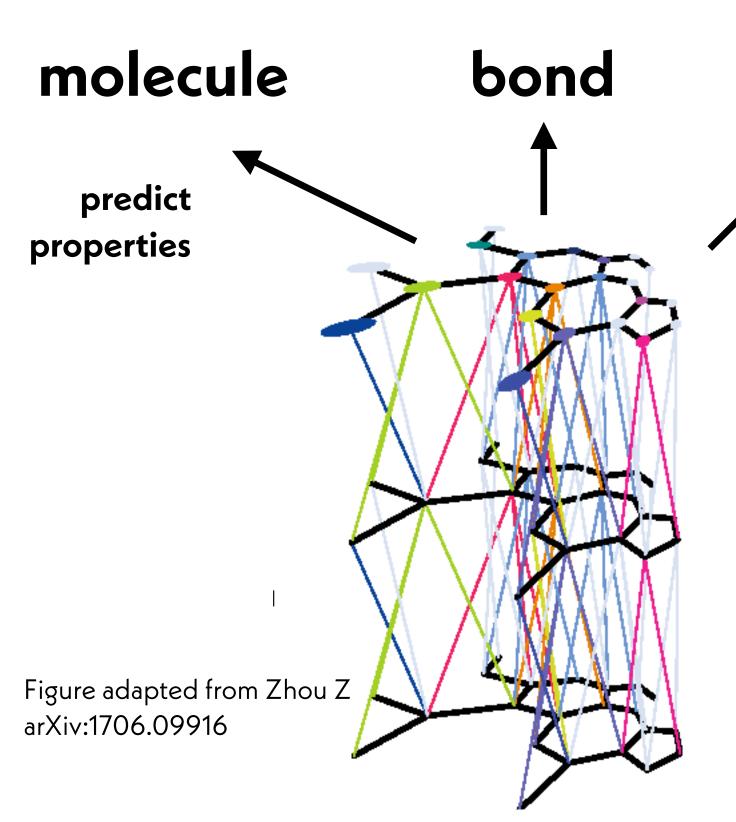
(node update)

(edge to global aggregate)

(node to global aggregate)

(global update)

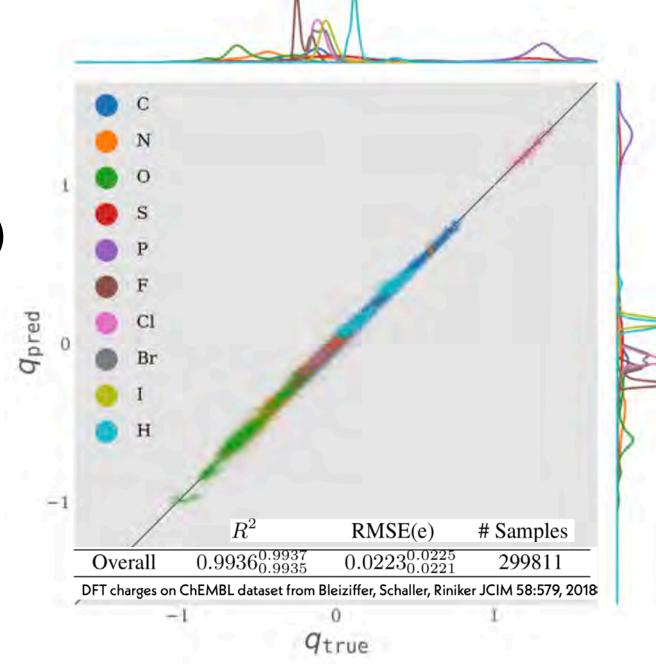
NEW GENERATIONS OF MACHINE LEARNING MODELS ARE PARTICULARLY WELL-SUITED TO CHEMISTRY



atom *

Learns electronegativity (e_i) and hardness (s_i) subject to fixed charge sum constraint:

$$\{\hat{q}_i\} = \underset{q_i}{\operatorname{argmin}} \sum_{i} \frac{\hat{e}_i}{e_i} q_i + \frac{1}{2} \frac{\hat{s}_i}{2} q_i^2$$
$$\sum_{i} \hat{q}_i = \sum_{i} q_i = Q$$



control experiment: direct prediction of charges: RMSE **0.2800 e**

 $\mathbf{e}_k^{(t+1)} = \phi^e(\mathbf{e}_k^{(t)}, \sum_{i \in \mathcal{N}_k^e} \mathbf{v}_i, \mathbf{u}^{(t)}),$

$$\bar{\mathbf{e}}_{i}^{(t+1)} = \rho^{e \to v}(E_{i}^{(t+1)}),$$

$$\mathbf{v}_i^{(t+1)} = \phi^v(\bar{\mathbf{e}}_i^{(t+1)}, \mathbf{v}_i^{(t)}, \mathbf{u}^{(t)}),$$

$$\bar{\mathbf{e}}^{(t+1)} = \rho^{e \to u}(E^{(t+1)}),$$

$$\bar{\mathbf{v}}^{(t+1)} = \rho^{v \to u}(V^{(t)}),$$

$$\mathbf{u}^{(t+1)} = \phi^u(\bar{\mathbf{e}}^{(t+1)}, \bar{\mathbf{v}}^{(t+1)}, \mathbf{u}^{(t)}),$$

(edge update)

(edge to node aggregate)

(node update)

(edge to global aggregate)

(node to global aggregate)

(global update)

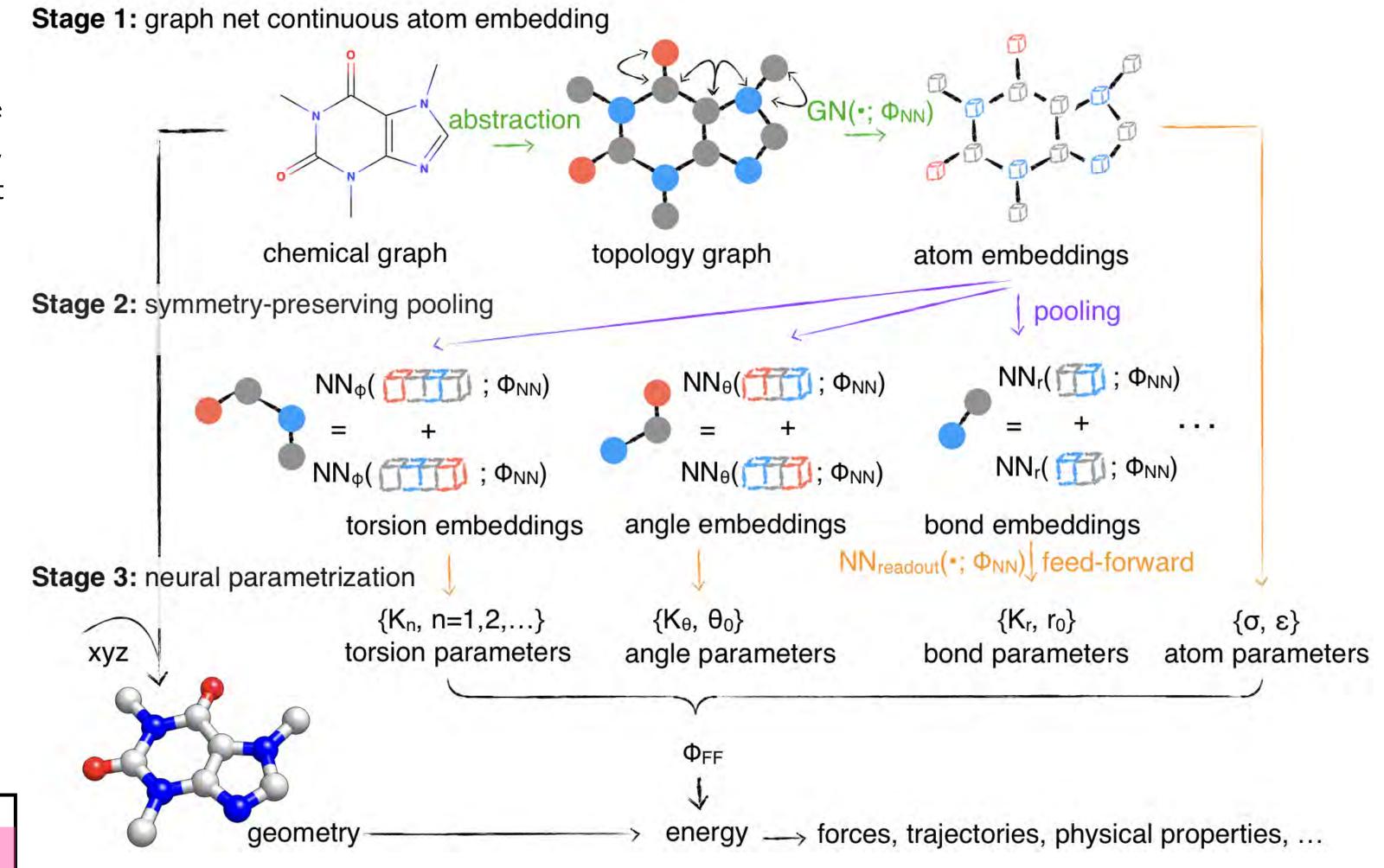
Graph Inference on MoLEcular Topology

preprint: https://arxiv.org/abs/1909.07903
code: http://github.com/choderalab/gimlet

YUANQING WANG

espaloma: **e**xtensible **s**urrogate **p**otential of **a**b initio learned and **o**ptimized by **m**essage-passing **a**lgorithm

use of only **chemical graph**means that model can generate
parameters for small molecules,
proteins, nucleic acids, covalent
ligands, carbohydrates, etc.



JOSH FASS

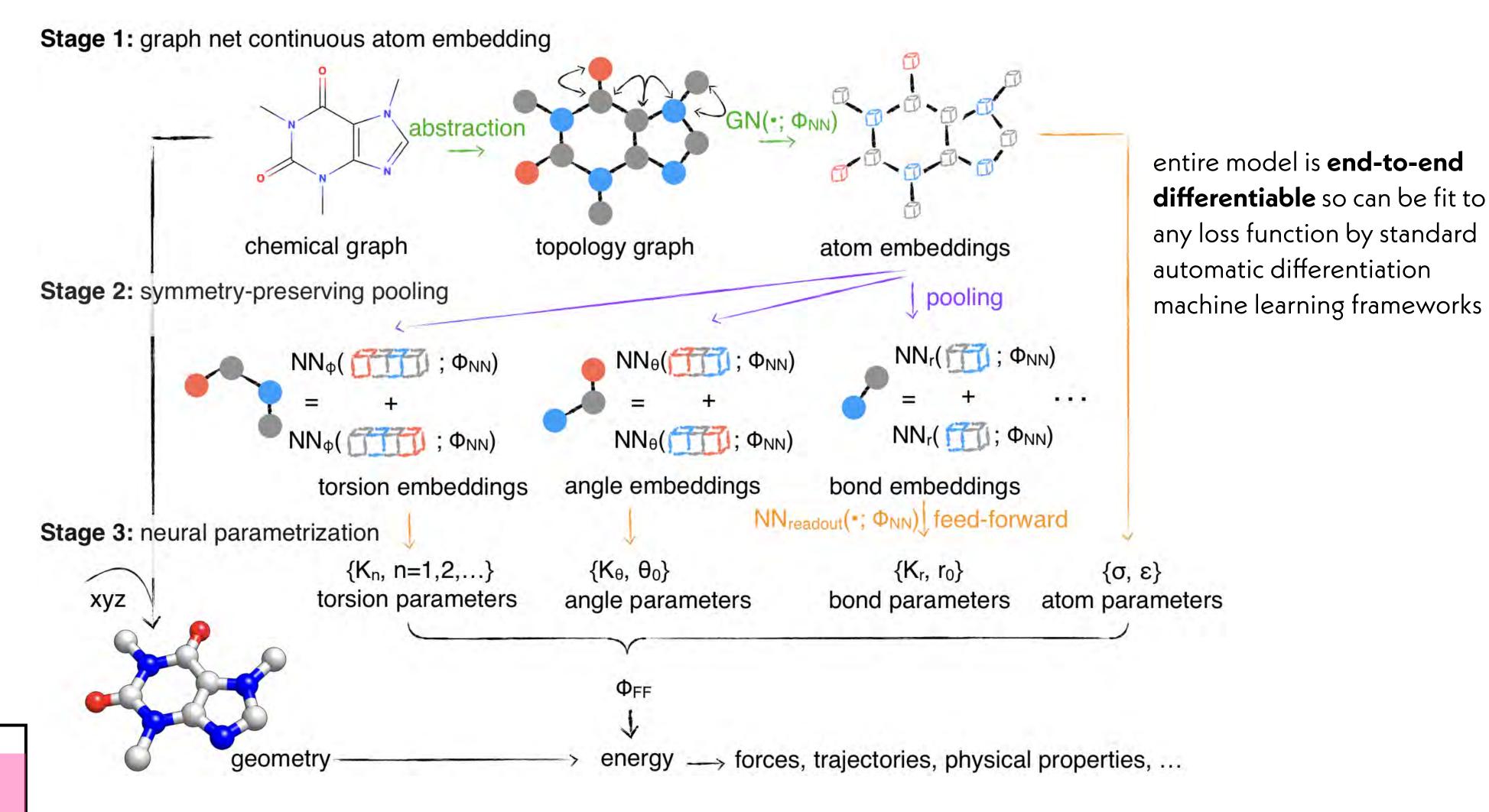
YUANQING

WANG

preprint: https://arxiv.org/abs/2010.01196

code: https://github.com/choderalab/espaloma

espaloma: **e**xtensible **s**urrogate **p**otential of **a**b initio learned and **o**ptimized by **m**essage-passing **a**lgorithm



JOSH FASS

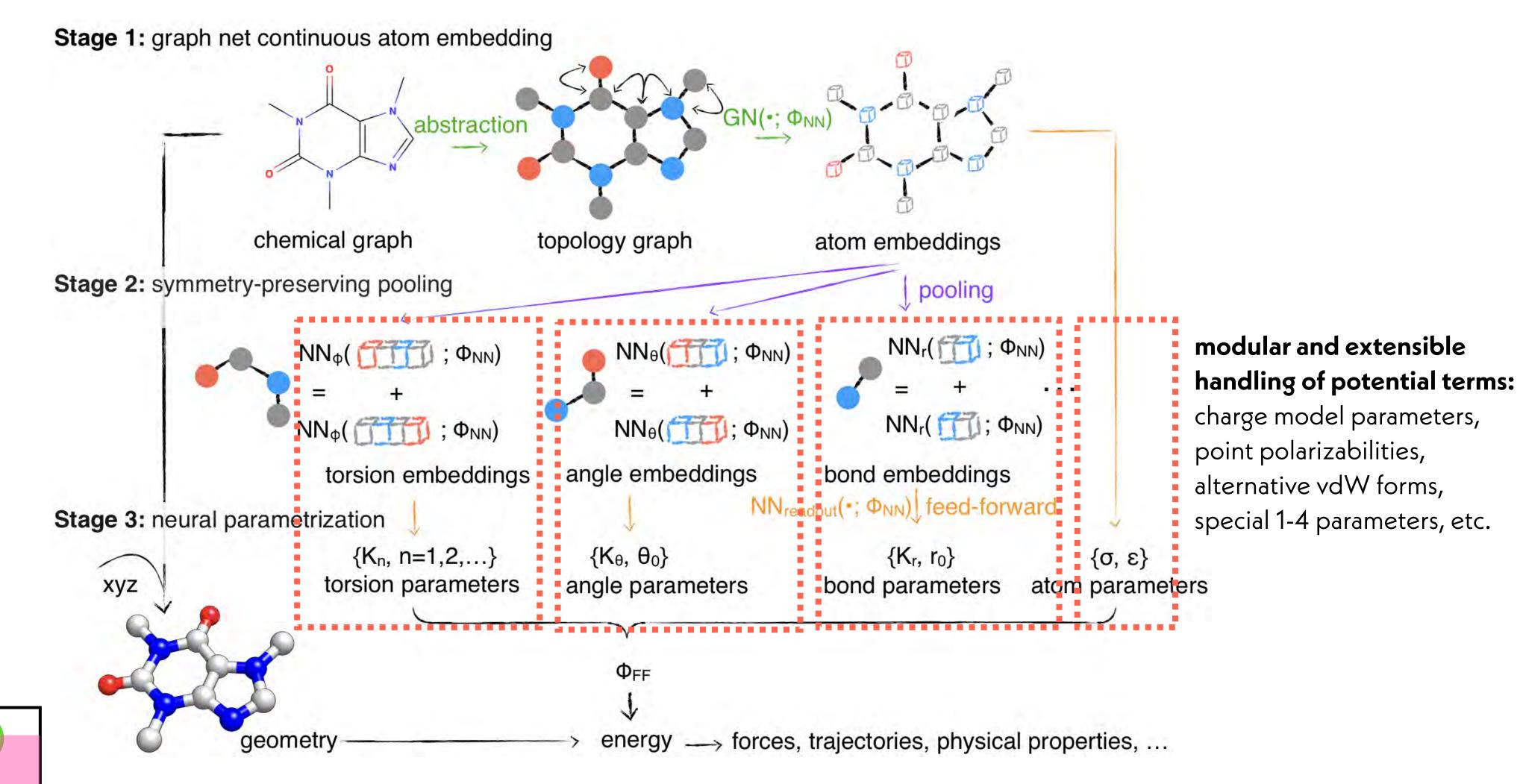
YUANQING

WANG

preprint: https://arxiv.org/abs/2010.01196

code: https://github.com/choderalab/espaloma

espaloma: extensible **s**urrogate **p**otential of **a**b initio learned and **o**ptimized by **m**essage-passing **a**lgorithm



JOSH FASS

YUANQING

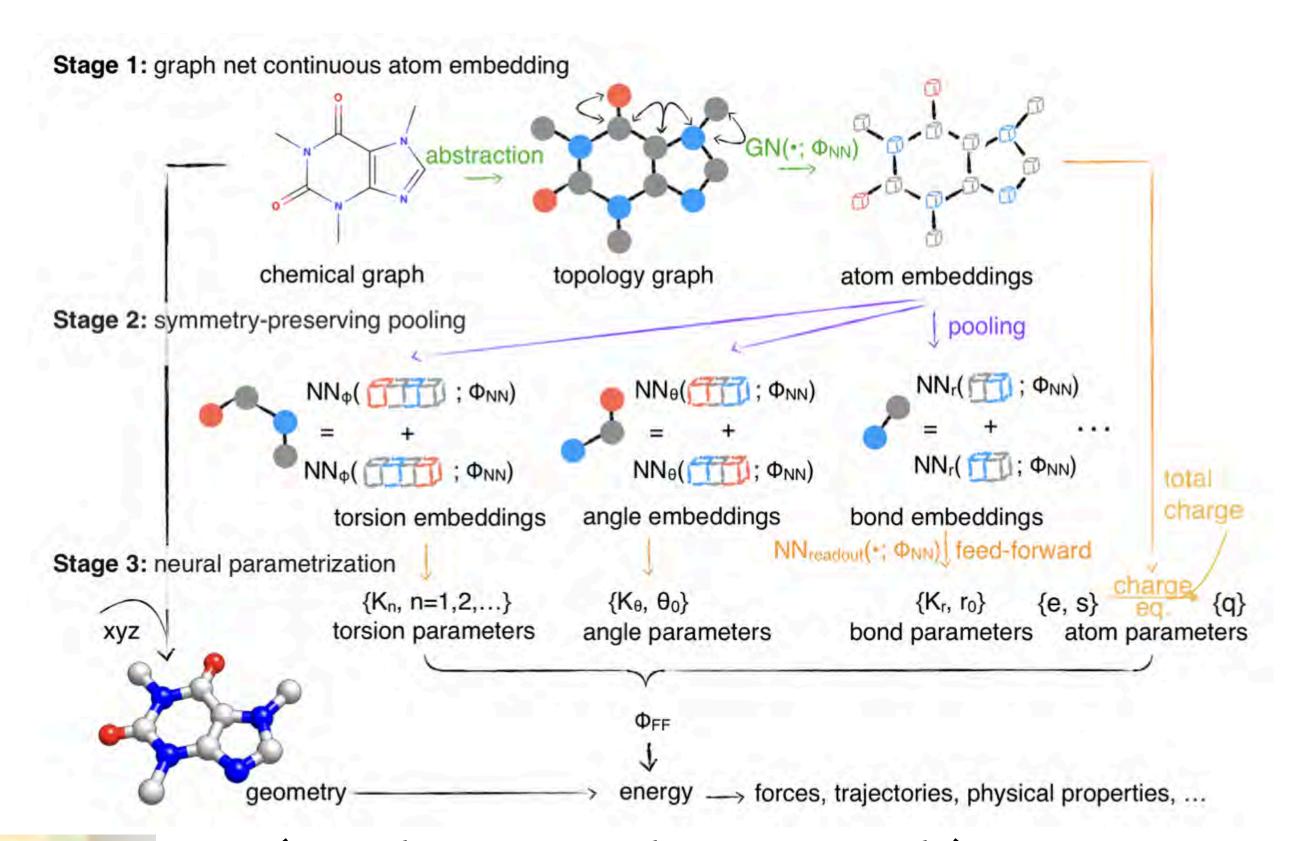
WANG

preprint: https://arxiv.org/abs/2010.01196

code: https://github.com/choderalab/espaloma

ESPALOMA MAKES BUILDING A NEW FORCE FIELD EASY

espaloma architecture



(implemented in pytorch)

http://github.com/choderalab/espaloma

YUANQING WANG

building a new force field

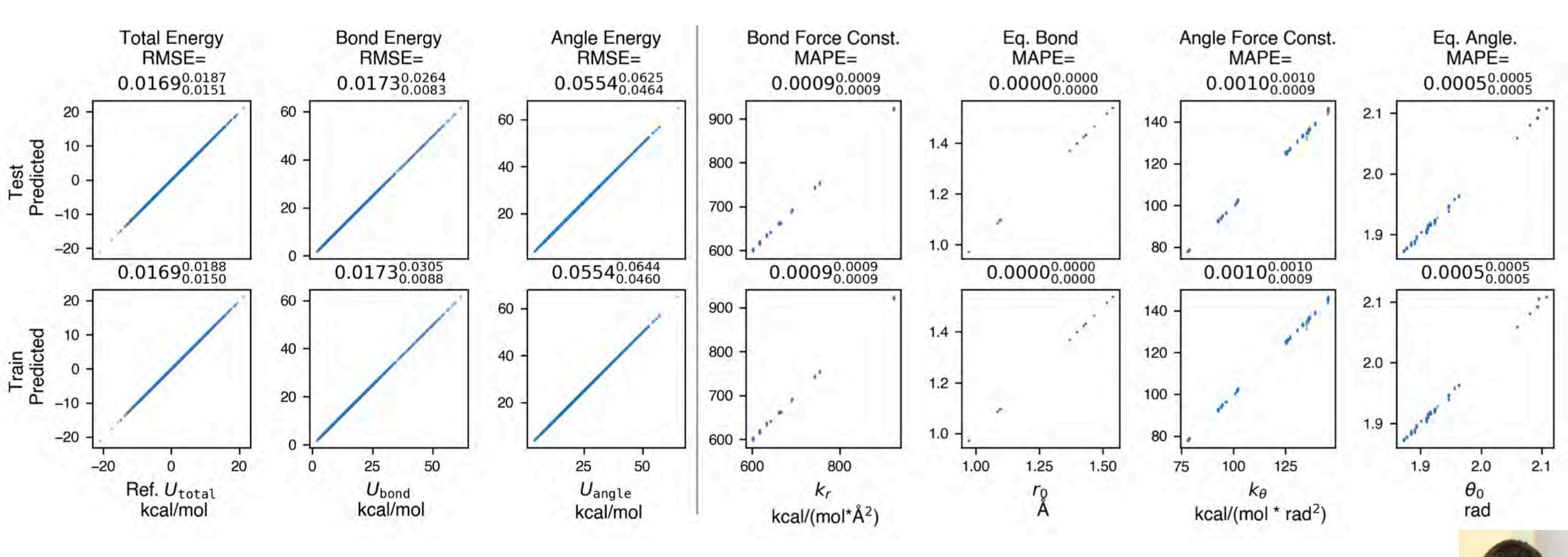
```
import torch, dgl, espaloma as esp
# retrieve OpenFF Gen2 Optimization Dataset
dataset = esp.data.dataset.GraphDataset.load("gen2").view(batch_size=128)
# define Espaloma stage I: graph -> atom latent representation
representation = esp.nn.Sequential(
    layer=esp.nn.layers.dgl_legacy.gn("SAGEConv"), # use SAGEConv implementation in DGL
    config=[128, "relu", 128, "relu", 128, "relu"], # 3 layers, 128 units, ReLU activation
# define Espaloma stage II and III:
# atom latent representation -> bond, angle, and torsion representation and parameters
readout = esp.nn.readout.janossy.JanossyPooling(
    in_features=128, config=[128, "relu", 128, "relu", 128, "relu"],
                                # define modular MM parameters Espaloma will assign
       1: {"e": 1, "s": 1}, # atom hardness and electronegativity
       2: {"coefficients": 2}, # bond linear combination
       3: {"coefficients": 3}, # angle linear combination
       4: {"k": 6}, # torsion barrier heights (can be positive or negative)
# compose all three Espaloma stages into an end-to-end model
espaloma_model = torch.nn.Sequential(
                 representation, readout,
                 esp.mm.geometry.GeometryInGraph(), esp.mm.energy.EnergyInGraph(),
                 esp.nn.readout.charge_equilibrium.ChargeEquilibrium(),
# define training metric
metrics = [
    esp.metrics.GraphMetric(
            base_metric=torch.nn.MSELoss(), # use mean-squared error loss
                                            # between predicted and QM energies
            between=['u', "u_ref"],
            level="g", # compare on graph level
    esp.metrics.GraphMetric(
            base_metric=torch.nn.MSELoss(), # use mean-squared error loss
                                            # between predicted and reference charges
            between=['q', "q_hat"],
            level="n1", # compare on node level
# fit Espaloma model to training data
results = esp.Train(
    ds_tr=dataset, net=espaloma_model, metrics=metrics,
    device=torch.device('cuda:0'), n_epochs=5000,
    optimizer=lambda net: torch.optim.Adam(net.parameters(), 1e-3), # use Adam optimizer
torch.save(espaloma_model, "espaloma_model.pt") # save model
```

Listing 1. Defining and training a modular Espaloma model.

ESPALOMA CAN LEARN TO REPRODUCE LEGACY MM FORCE FIELDS WITH LOW RMSE ERROR IN CONFORMATIONAL ENERGIES

conformer energies

force field parameters



preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

reference force field: GAFF 1.81 [https://doi.org/10.1002/jcc.20035] dataset: PhAlkEthOH [https://dx.doi.org/10.1021/acs.jctc.8b00640]

	(a) dataset		# traic	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) ualaset		# mols	# trajs		Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB	
PhAlkEthOH (simple CHO)		7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$		
OpenFF Gen2 Optimization (druglike)		792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)		24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$		
PepConf (peptides)		736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$	
joint	OpenFF Gen2 Optimization	1528	11537	45902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
Joint	PepConf	1320	11337	43302	$1.2038_{1.1178}^{1.3056}$	$1.7307_{1.6053}^{1.8439}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$	

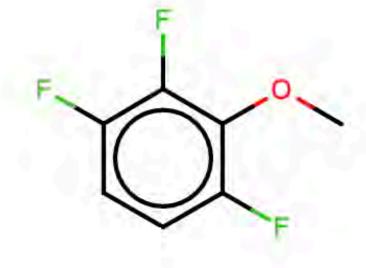
(a) dataset	# mals	# traic	# spanshots	Espalon	na RMSE	Legacy F	FF RMSE (kcal	/mol) (Test m	nolecules)
	# mols	# trajs	# snapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$	

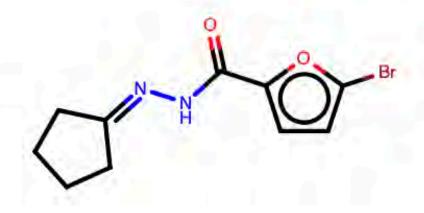
PhAlkEthOh: Phenyls, Alkanes, Ethers, and alcohols (OH) (a low-complexity chemical space)

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

(a) datacet	# mals	# traic	# spanshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)			
(a) dataset	# mols	# trajs	# snapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$	
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	

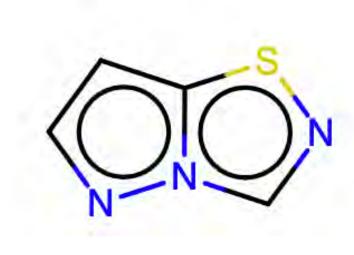
OpenFF Gen2 Optimization set: Diverse druglike fragments challenging for force fields (a moderate-complexity chemical space)

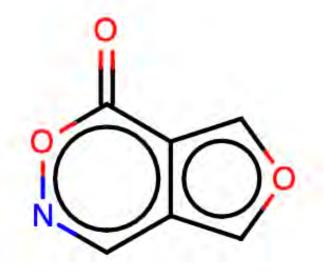




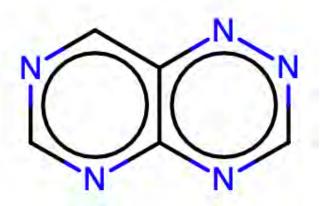
(a) datacat	# mala	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset	# mols			Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$	2.1070	

VEHICLe: Virtual exploratory heterocyclic drug scaffold library (aromatic bicyclic heterocyclic compounds containing C, N, O, S, H)



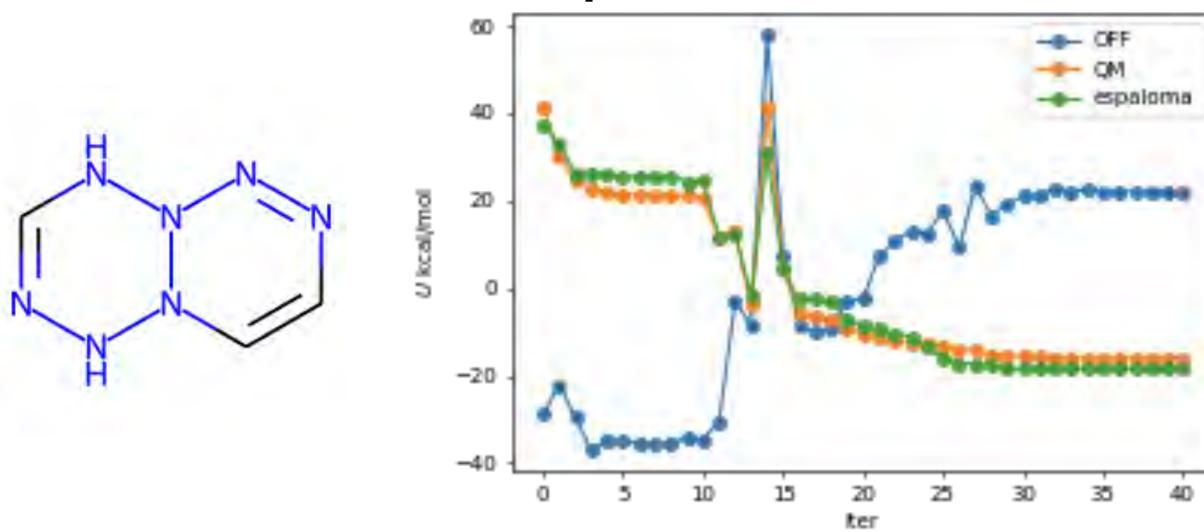


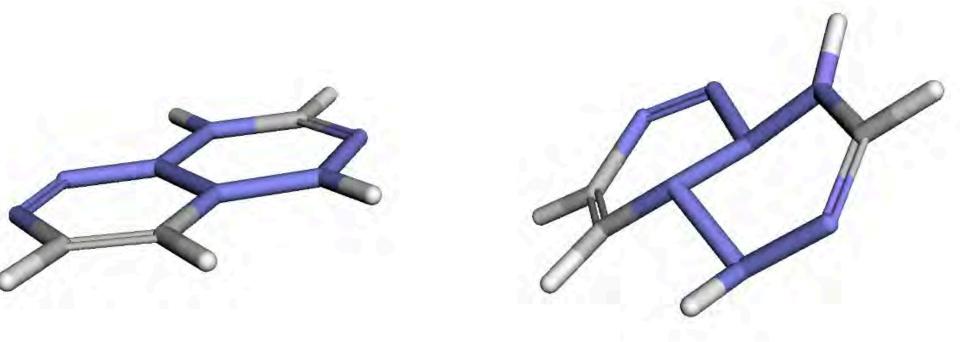




(a) datacet	# mals	# traic	# cnanchate	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset	# mols	# trajs	# snapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600^{0.8805}_{0.6644}$	$2.1768^{2.3388}_{2.0380}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$	2 10 70	

Comparison with QCArchive data





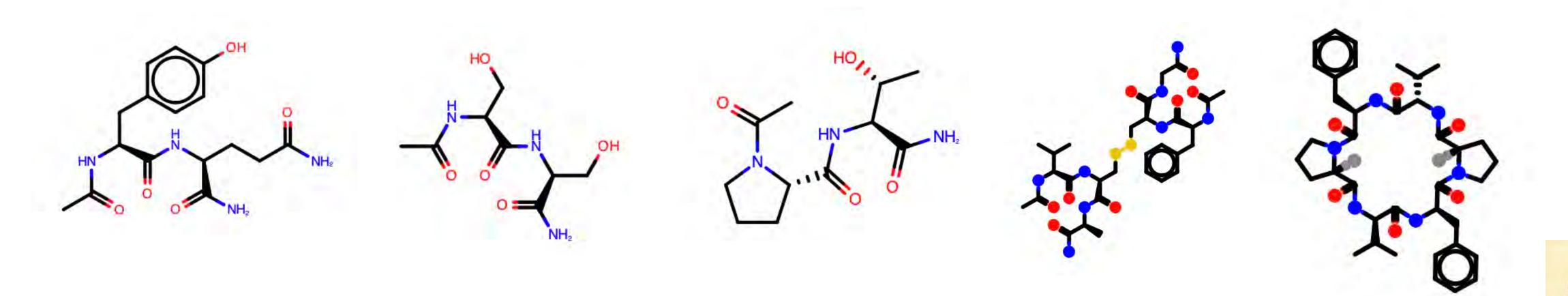
DFT B3LYP-D3(BJ) / DZVP

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN QM ACCURACY AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

(a) datacet	# mols # trajs		nic # spanshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)			
(a) dataset	# 111015	# trajs	# snapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$	
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$	
PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502^{3.1859,*}_{3.1117}$

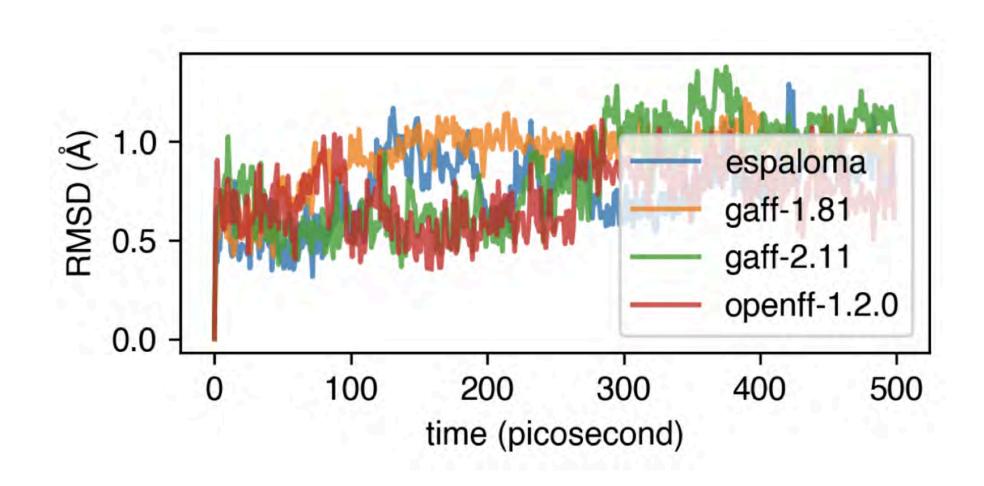
PepConf: Short peptides, including disulfides and cyclic peptides

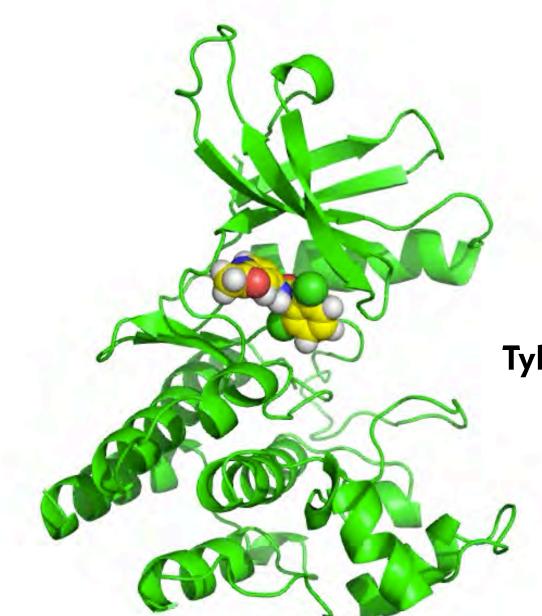


preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN QM ACCURACY AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

	(a) datacet	# mols	# trais	# snapshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)			olecules)
	(a) dataset		# trajs	# Shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB
PhAlkEthOH (simple CHO)		7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$	
OpenF	F Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$	
	PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$
joint	OpenFF Gen2 Optimization	1528	11537	45902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386^{2.6640}_{2.4370}$	
	PepConf	1320	11337		$1.2038_{1.1178}^{1.3056}$	$1.7307^{1.8439}_{1.6053}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$





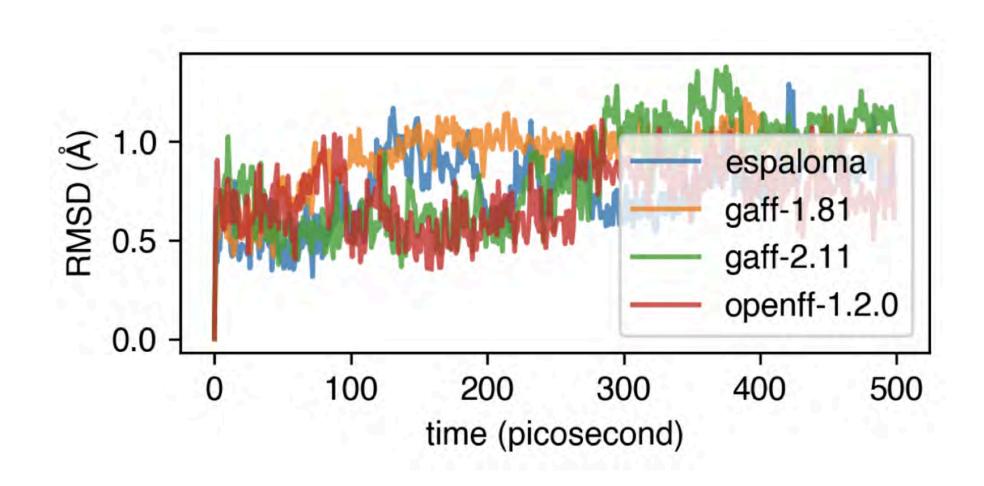
Tyk2 from OpenFF benchmark set
espaloma joint model
+ TIP3P water

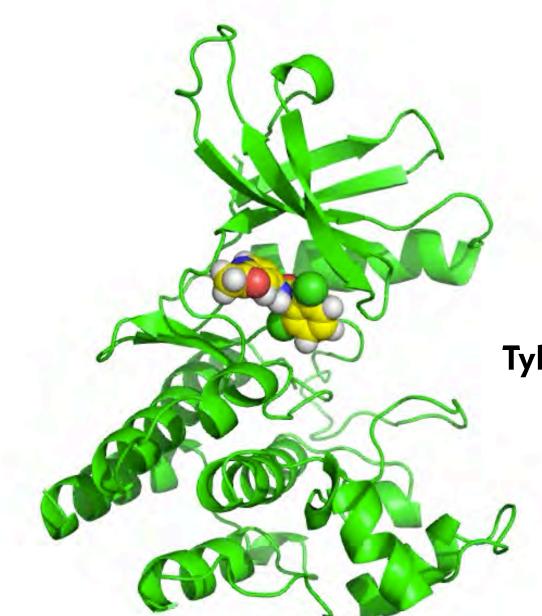
preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

YUANQING WANG

ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN QM ACCURACY AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

	(a) datacet	# mols	# trais	# snapshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)			olecules)
	(a) dataset		# trajs	# Shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff14SB
PhAlkEthOH (simple CHO)		7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398_{1.0715}^{1.2332}$	$1.6071_{1.5197}^{1.6915}$	$1.7267_{1.6543}^{1.7935}$	$1.7406_{1.6679}^{1.8148}$	
OpenF	F Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	
	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	$8.0247_{7.8271}^{8.2456}$	$8.0077_{7.7647}^{8.2313}$	$9.4014_{9.2135}^{9.6434}$	
	PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$
joint	OpenFF Gen2 Optimization	1528	11537	45902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386^{2.6640}_{2.4370}$	
	PepConf	1320	11337		$1.2038_{1.1178}^{1.3056}$	$1.7307^{1.8439}_{1.6053}$	$3.6143_{3.4870}^{3.7288}$	$4.4446_{4.3386}^{4.5738}$	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.1117}^{3.1859,*}$





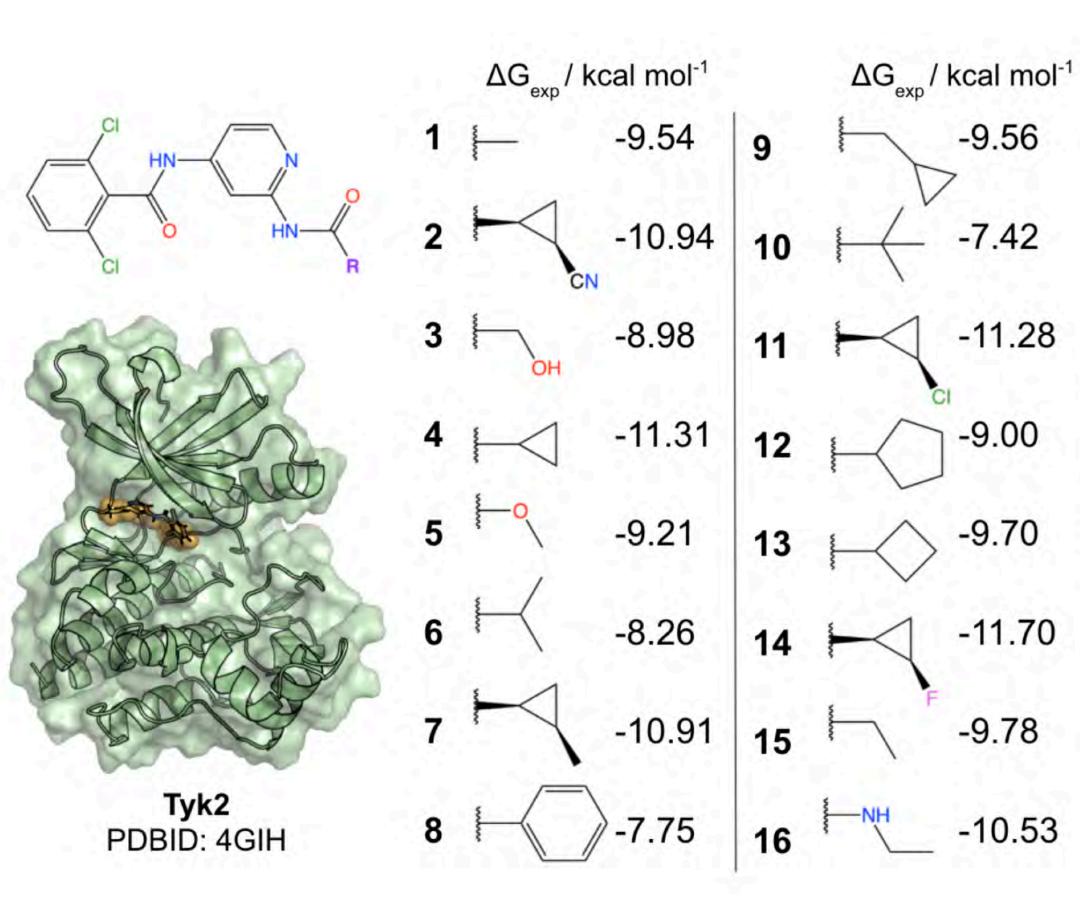
Tyk2 from OpenFF benchmark set
espaloma joint model
+ TIP3P water

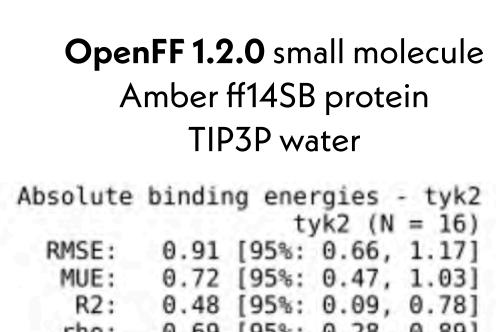
preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma

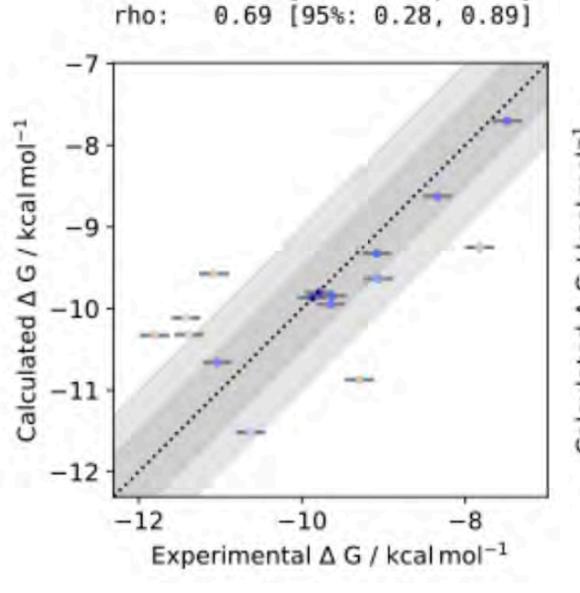
YUANQING WANG

ESPALOMA SMALL MOLECULE PARAMETERS PERFORM AS WELL OR BETTER THAN MODERN BIOMOLECULAR FORCE FIELDS

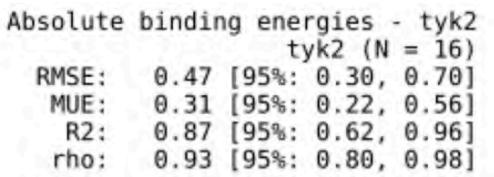
MIKE HENRY

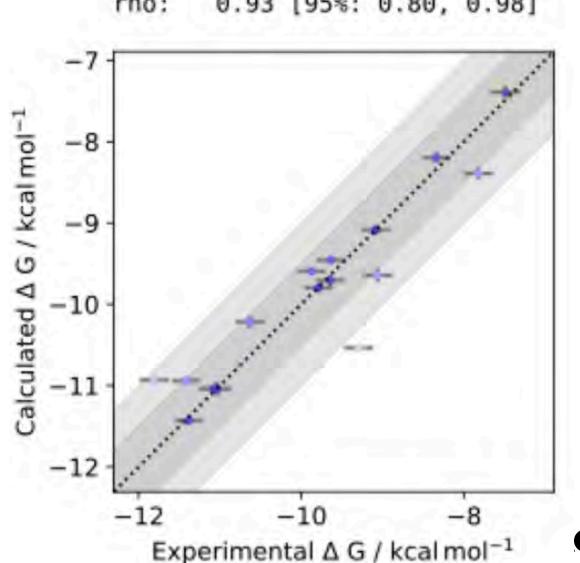






espaloma "joint" 0.2.2 small molecule Amber ff14SB protein TIP3P water



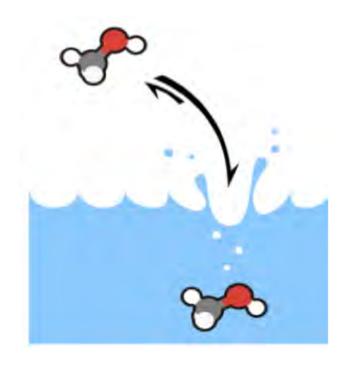


DOMINIC RUFA

preprint: https://arxiv.org/abs/2010.01196 code: http://github.com/choderalab/espaloma

free energy calculations with http://github.com/choderalab/perses

ESPALOMA CAN ALSO FIT EXPERIMENTAL FREE ENERGIES



experimental hydration free energies from FreeSolv https://github.com/MobleyLab/FreeSolv

loss function:

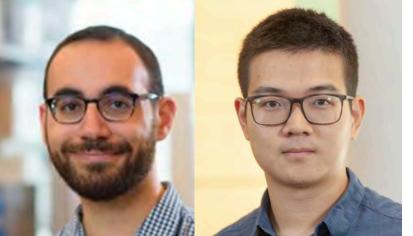
$$L(\Phi_{NN}) = \sum_{n=1}^{N} \frac{\left[\Delta G_n(\Phi_{NN}) - \Delta G_n^{\exp}\right]^2}{\sigma_n^2}$$

Here, ΔG estimated via one-step free energy perturbation, but can easily differentiate properties through MBAR

JOSH FASS

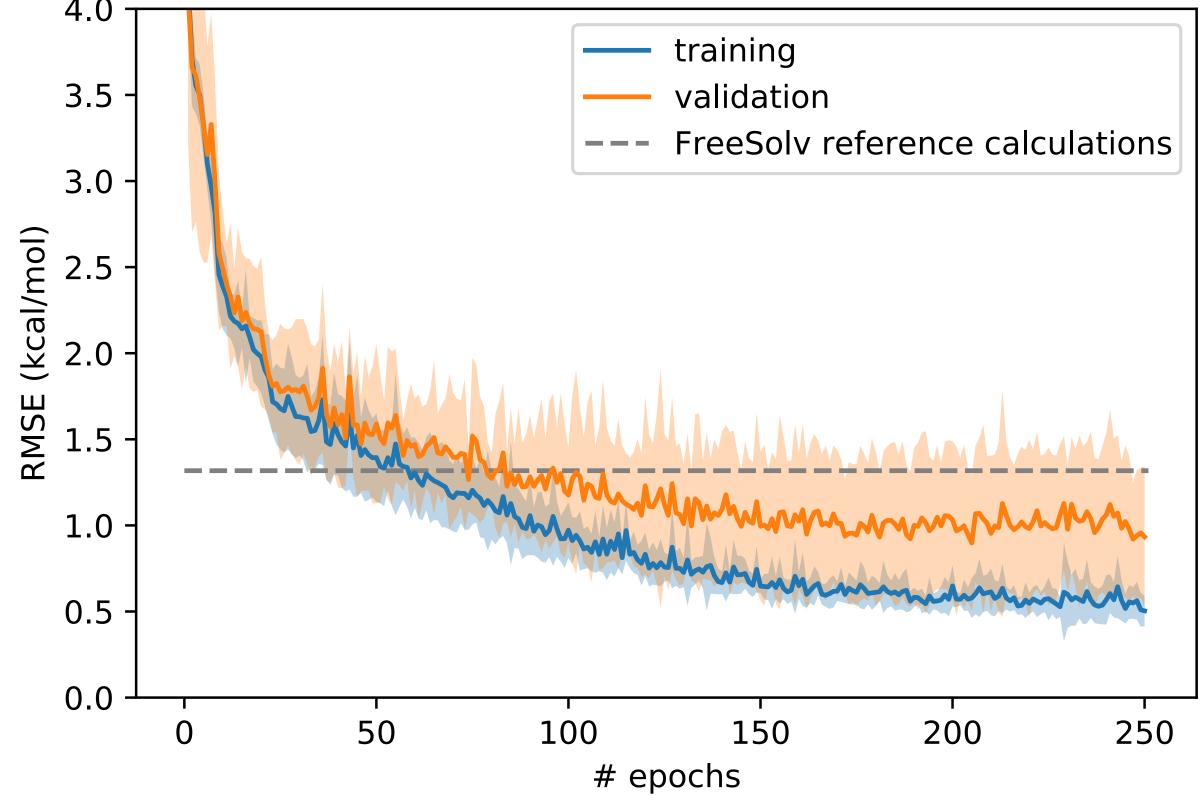
WANG

YUANQING



preprint: https://arxiv.org/abs/2010.01196 code: https://github.com/choderalab/espaloma

OBC2 GBSA FreeSolv RMSE

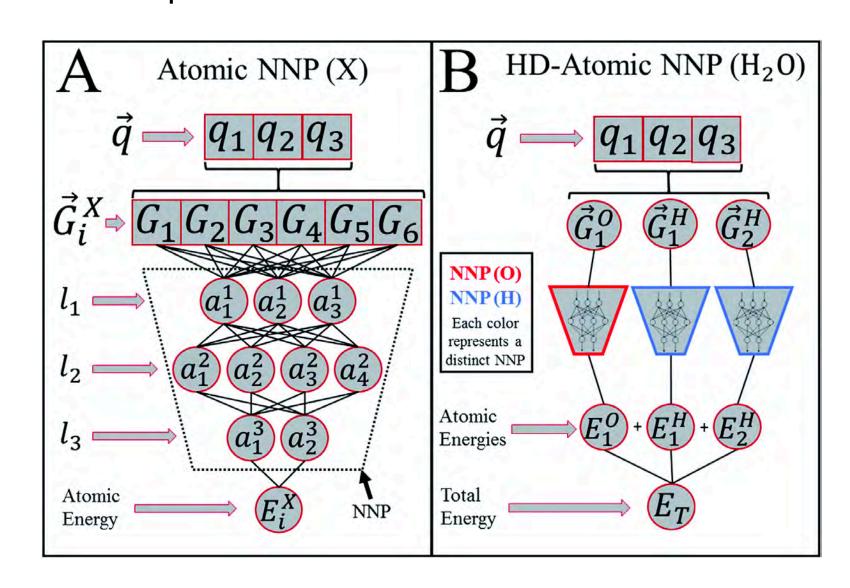


A NEW GENERATION OF QUANTUM MACHINE LEARNING (QML) POTENTIALS PROVIDE SIGNIFICANTLY MORE FLEXIBILITY IN FUNCTIONAL FORM, THOUGH AT MUCH GREATER COST

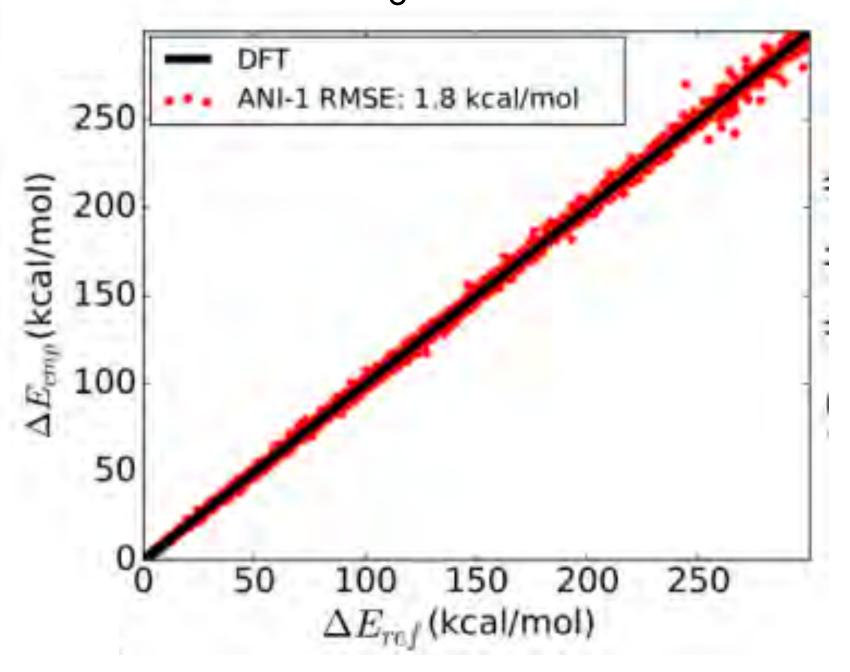
ANI family of quantum machine learning (QML) potentials

radial and angular features

 deep neural network for each atom



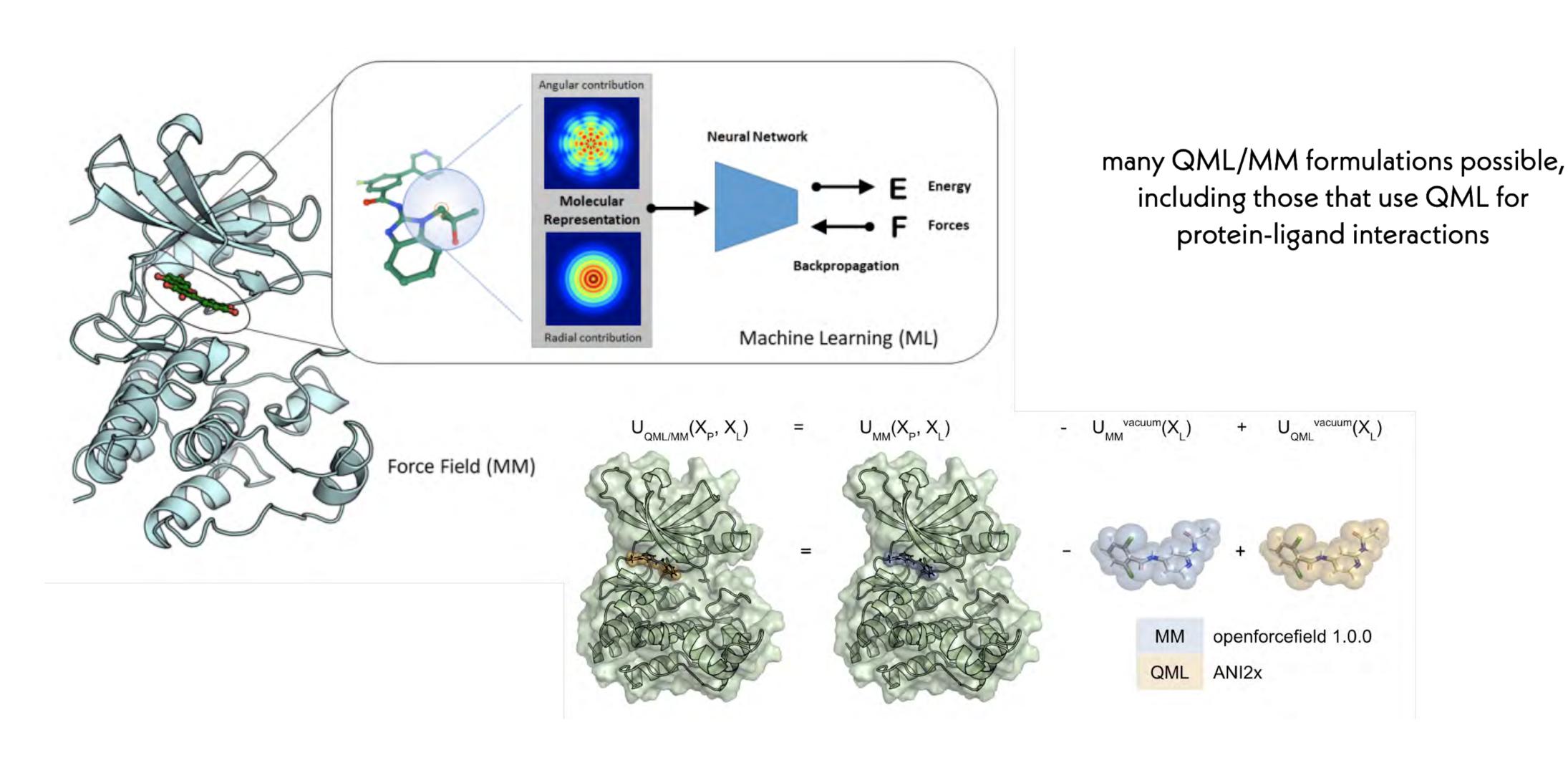
excellent agreement with DFT



OLEXANDR ADRIAN ISAYEV ROITBERG

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. http://doi.org/10.1039/c6sc05720a

HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF

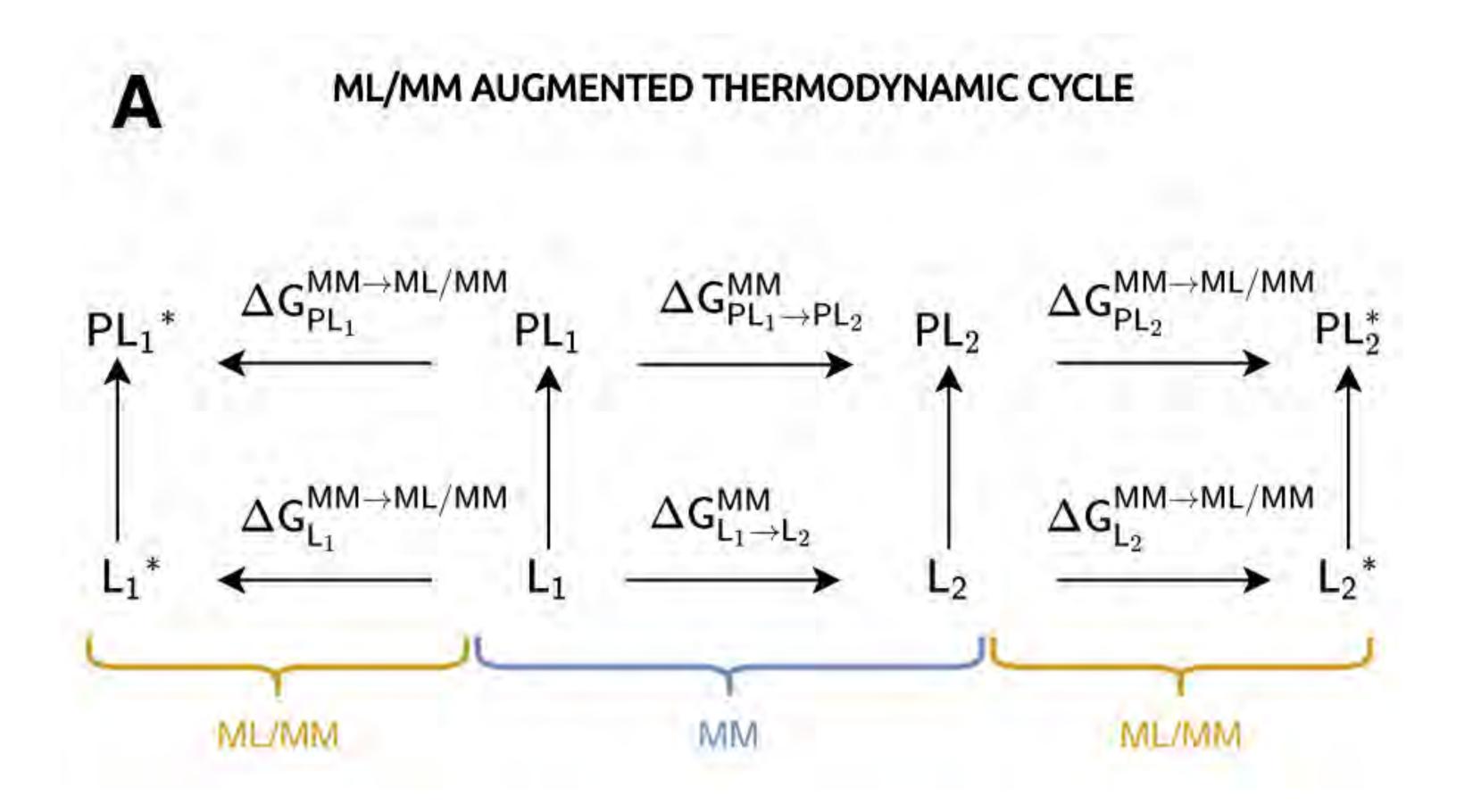


Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.

preprint: https://doi.org/10.1101/2020.07.29.227959

code: https://github.com/choderalab/qmlify

HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF

MM (OPLS2.1 + CM1A-BCC charges)
Missing torsions from LMP2/cc-pVTZ(-f) QM calculations
SPC water

	ΔG_{exp}	kcal mol ⁻¹		ΔG_{exp}	kcal mol ⁻¹	no
CI HN-N	1 —	-9.54	9	1	-9.56	bi
HIN	2	-10.94	10	+	-7.42	se
SON NO	3 OH	-8.98	11	$\vdash \triangleleft$	-11.28	no M
	4 🖂	-11.31	12	-	-9.00	R
	5	-9.21	13	\mapsto	-9.70	
	6	-8.26	14	$\vdash \triangleleft$	-11.70	
	₇	-10.91	15	-	-9.78	
Tyk2 PDBID: 4GIH	8	-7.75	16	₩.	-10.53	

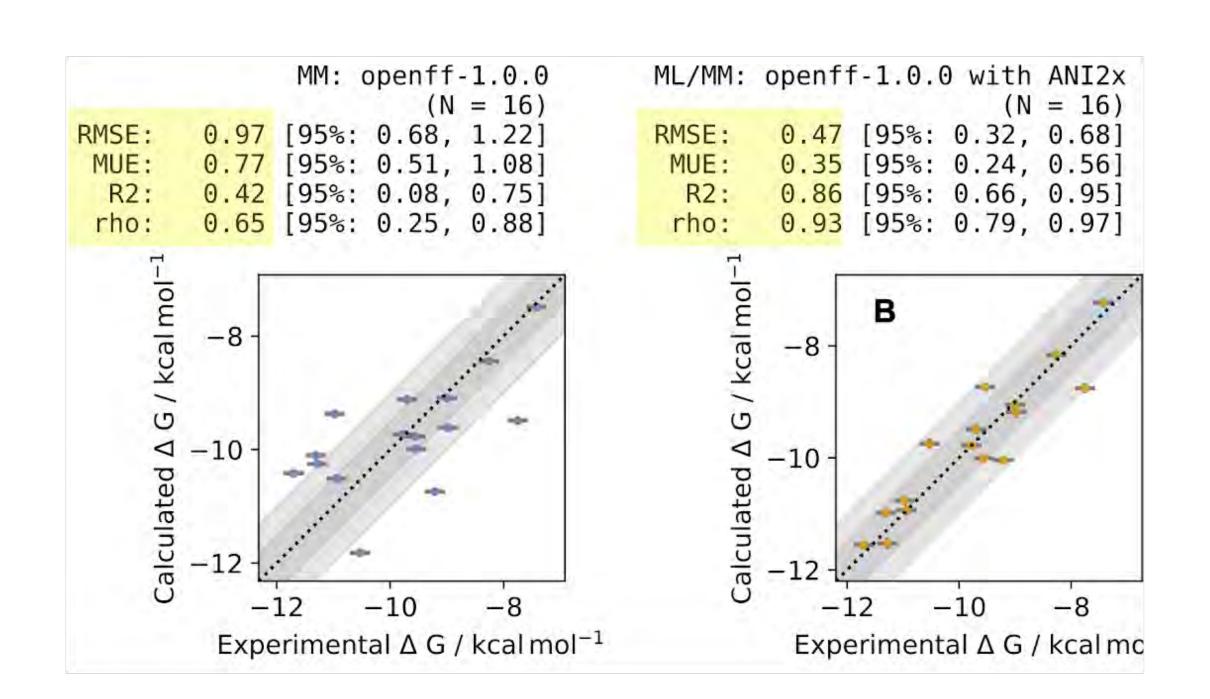
		Tyk2
1	no. of compds	16
	binding affinity range (kcal/mol)	4.3
	crystal structure	4GIH
	series ref	52,53
	no. of perturbations	24
	MUE FEP	0.75 ± 0.11
	RMSE FEP	0.93 ± 0.12

Free energies are in units of kilocalories per mole.

Tyk2 benchmark system from Wang et al. JACS 137:2695, 2015 replica-exchange free energy calculations with solute tempering (FEP/REST)

MM (OpenFF 1.0.0 "Parsley")
AMBER14SB protein force field
TIP3P; Joung and Cheatham ions

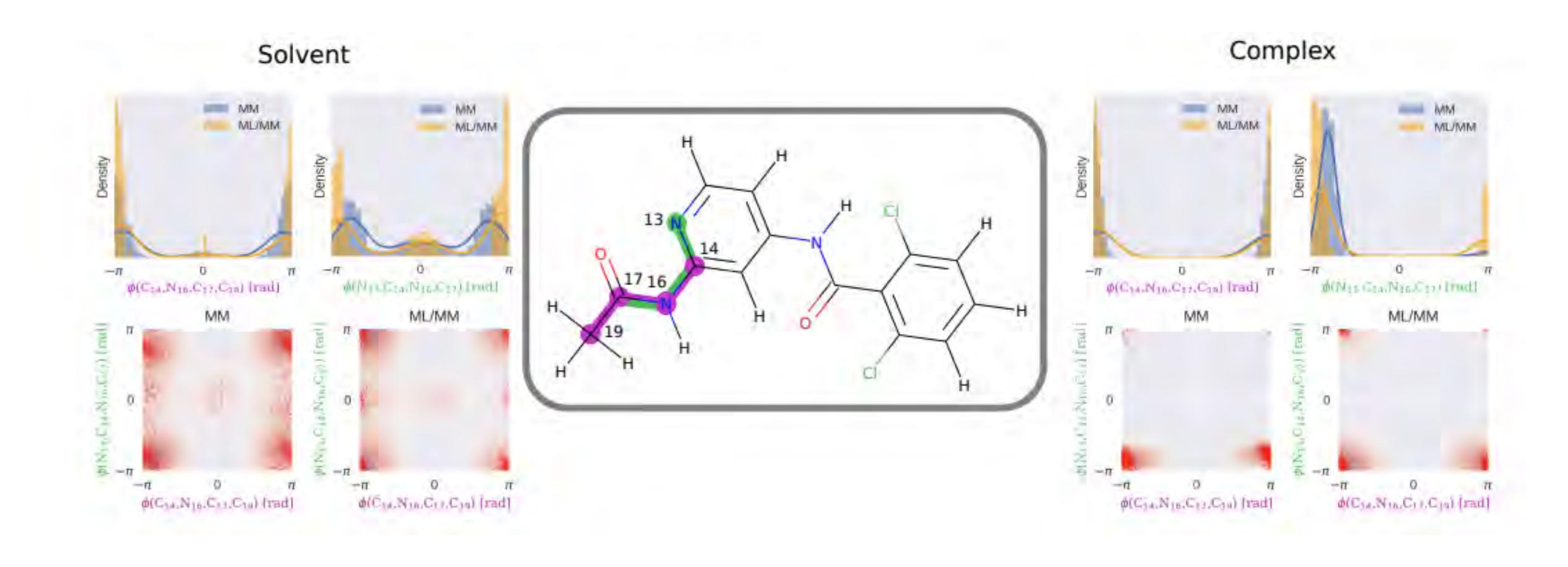
QML/MM (OpenFF 1.0.0 + ANI2x) AMBER14SB protein force field TIP3P; Joung and Cheatham ions



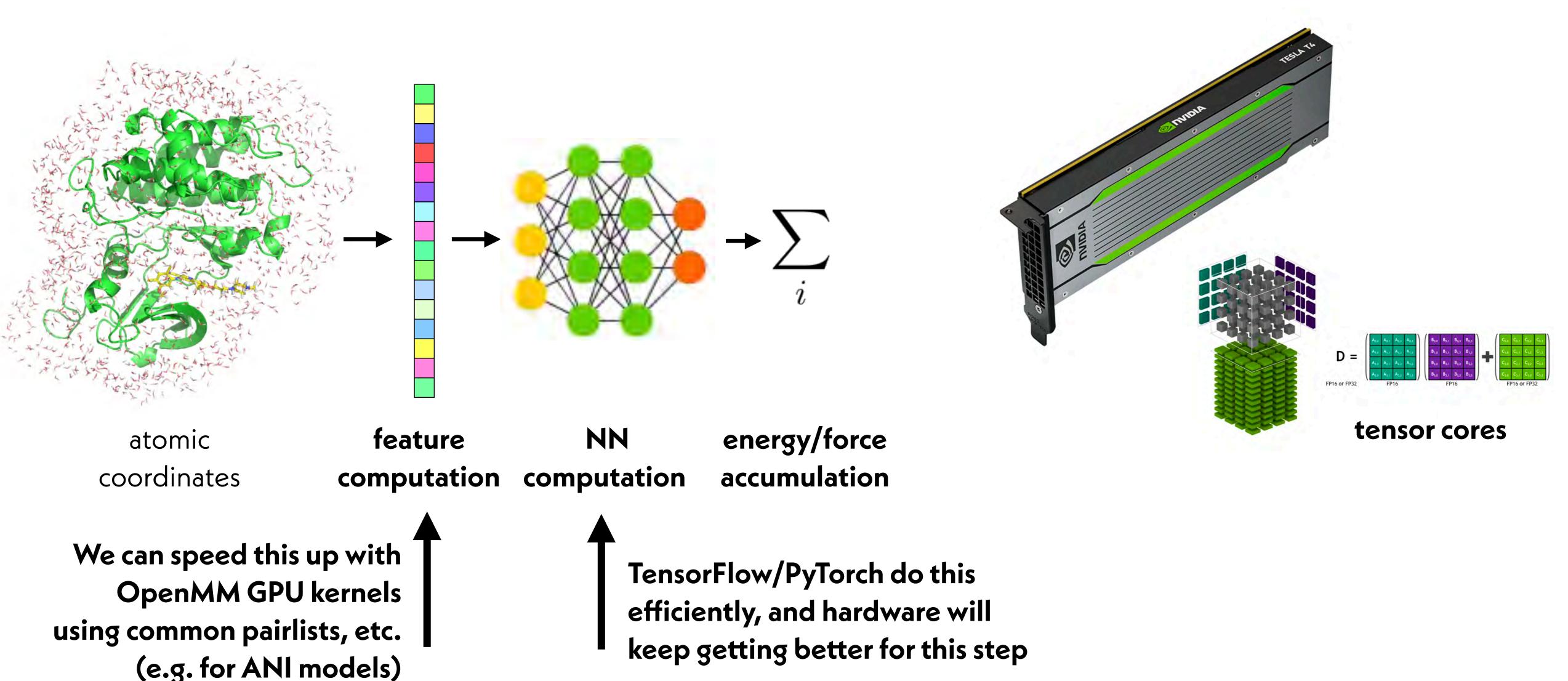
replica-exchange free energy calculations with perses **preprint:** https://doi.org/10.1101/2020.07.29.227959

code: https://github.com/choderalab/perses
https://github.com/choderalab/qmlify

HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



COMPUTATIONAL BOTTLENECKS IN CURRENT QML MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS



COMPUTATIONAL BOTTLENECKS IN CURRENT QML MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS

PDB ID	# res	# heavy atoms	OpenMM ns/day (4 fs timestep)	TorchANI QML/MM ns/day (2 fs timestep)	OpenMM QML/MM* ns/day (2 fs timestep)
3BE9	328	48	436	10.4	96.5 / 50.8
2P95	286	50	430	7.93	96.8 / 49.8
1HPO	198	64	547	9.12	101 / 44.6
1AJV	198	75	666	9.19	101 / 40.7

* ANI ensemble size: 1/8

NNPOps library

https://github.com/openmm/nnpops

- * CUDA/CPU accelerated kernels
- * API for inclusion in MD engines
- * Ops wrappers for ML frameworks (PyTorch, TensorFlow, JAX)
- * Community-driven, package agnostic

(~2.5x slower than GPU MD right now, but need 2x smaller timestep) model distillation will become important in building single models that are efficient on hardware

paper: https://arxiv.org/abs/2201.08110
code: https://github.com/openmm/nnpops

OPENMM 8 WILL MAKE QML/MM SIMULATIONS INCREDIBLY EASY

```
# Use Amber 14SB and TIP3P-FB for the protein and solvent
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
# Use OpenFF for the ligand
from openmmforcefields.generators import SMIRNOFFTemplateGenerator
smirnoff = SMIRNOFFTemplateGenerator(molecules=molecules)
# Create an OpenMM MM system
mm_system = forcefield.createSystem(topology)
# Replace ligand intramolecular energetics with ANI-2x
potential = MLPotential('ani2x')
ml_system = potential.createMixedSystem(topology, mm_system, ligand_atoms)
```

OpenMM 8 beta should be out next week!

WE NEED A ML MODEL STANDARD AND REPOSITORY TO MAKE THEM EASIER TO DEPLOY AND USE

The OpenMM team has submitted an NIH proposal aiming to define portable standards:

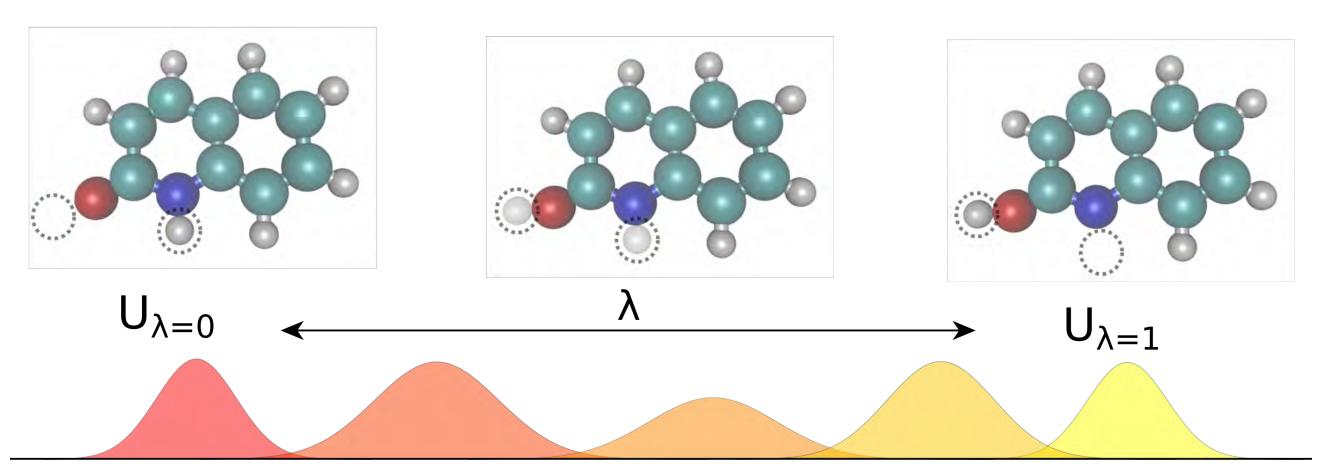
```
from simtk.openmm.app import MLModelRepository
# Grab ANI-1ccx from the ML model repository
model = MLModelRepository('ANI-1ccx')
# or grab a different model by DOI
model = MLModelRepository('10.2084/jctc.2985019')
# Create an OpenMM system from a specified molecular topology
system = model.create_system(topology)
# Simulate it in OpenMM
integrator = openmm.LangevinIntegrator(temperature, collision_rate, timestep)
context = openmm.Context(system, integrator)
context.setPositions(positions)
integrator.step(nsteps)
```

A well-defined portable QML standard would make it easier to build and deliver QML force fields to multiple simulation packages.

PURE QUANTUM MACHINE LEARNING (QML) POTENTIALS CAN BE USED TO COMPUTE FREE ENERGY DIFFERENCES BETWEEN CHEMICAL SPECIES

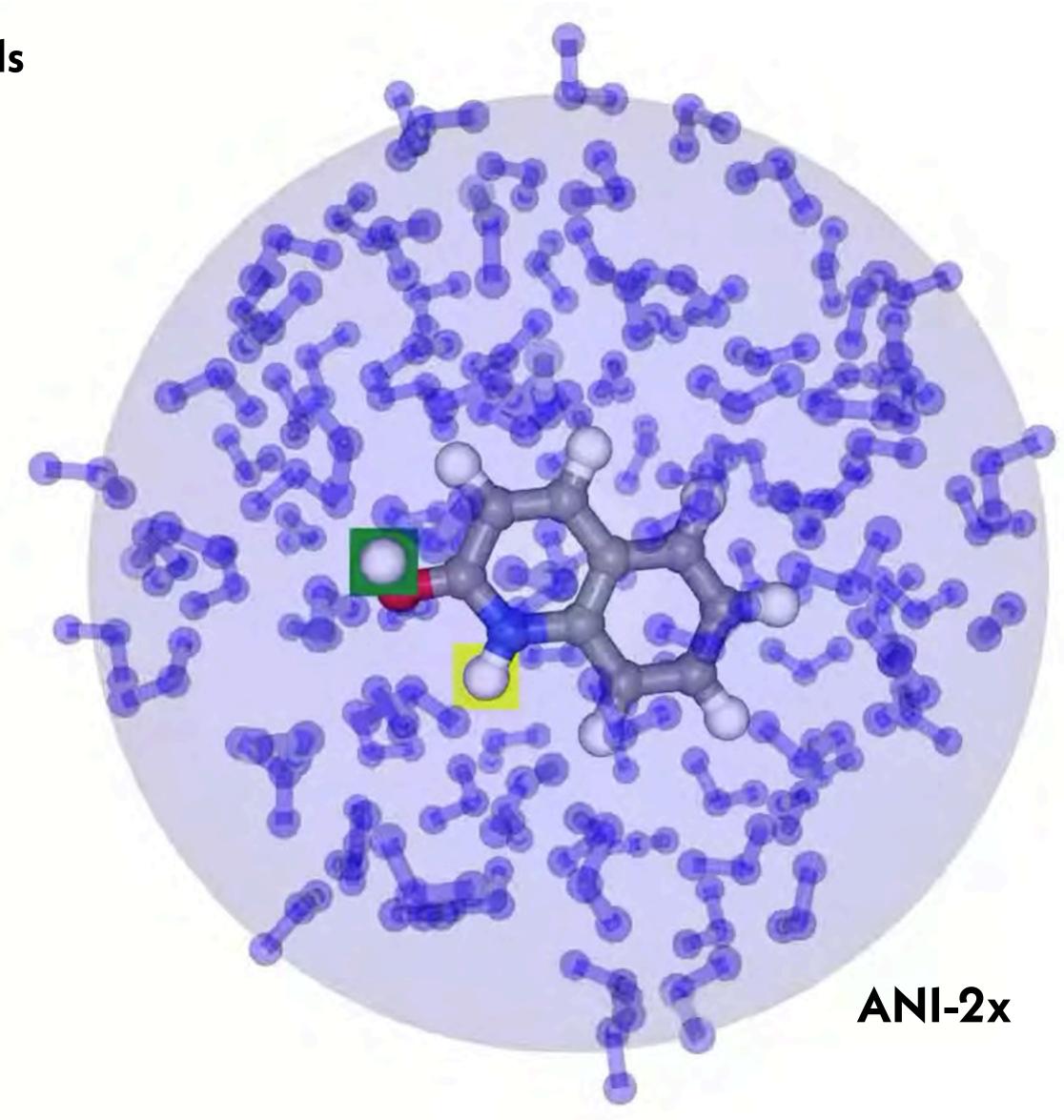
Potentials are free of singularities, so **simple linear alchemical potentials** can robustly compute alchemical free energies

$$U(x;\lambda) = (1-\lambda)U_{\lambda=0}(x) + \lambda U_{\lambda=1}(x)$$



Simple atomic restraints can be used to improve efficiency by preventing atoms from flying away

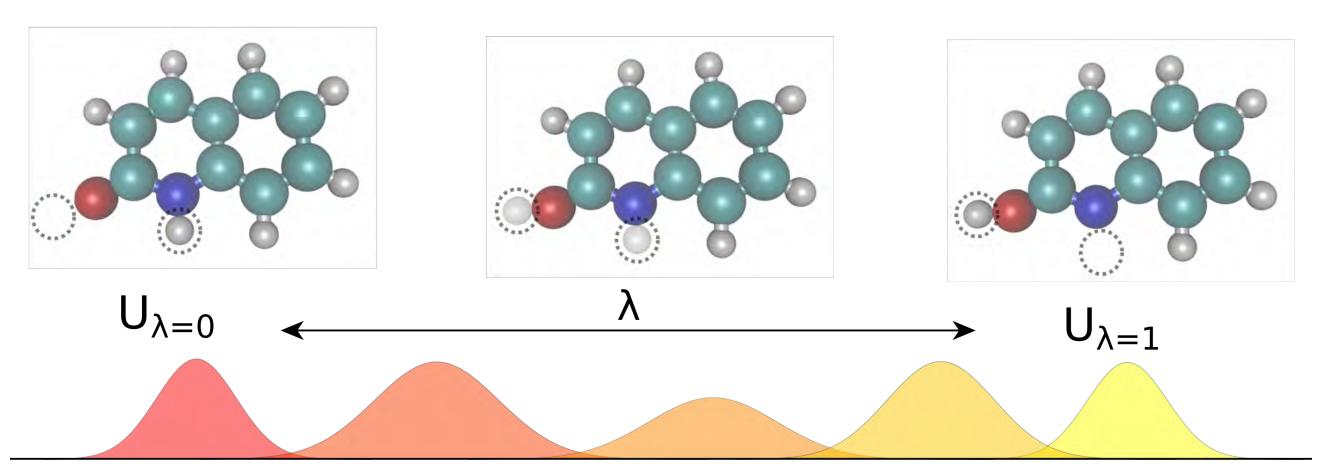
preprint: https://doi.org/10.1101/2020.10.24.353318 code: https://github.com/choderalab/neutromeratio



PURE QUANTUM MACHINE LEARNING (QML) POTENTIALS CAN BE USED TO COMPUTE FREE ENERGY DIFFERENCES BETWEEN CHEMICAL SPECIES

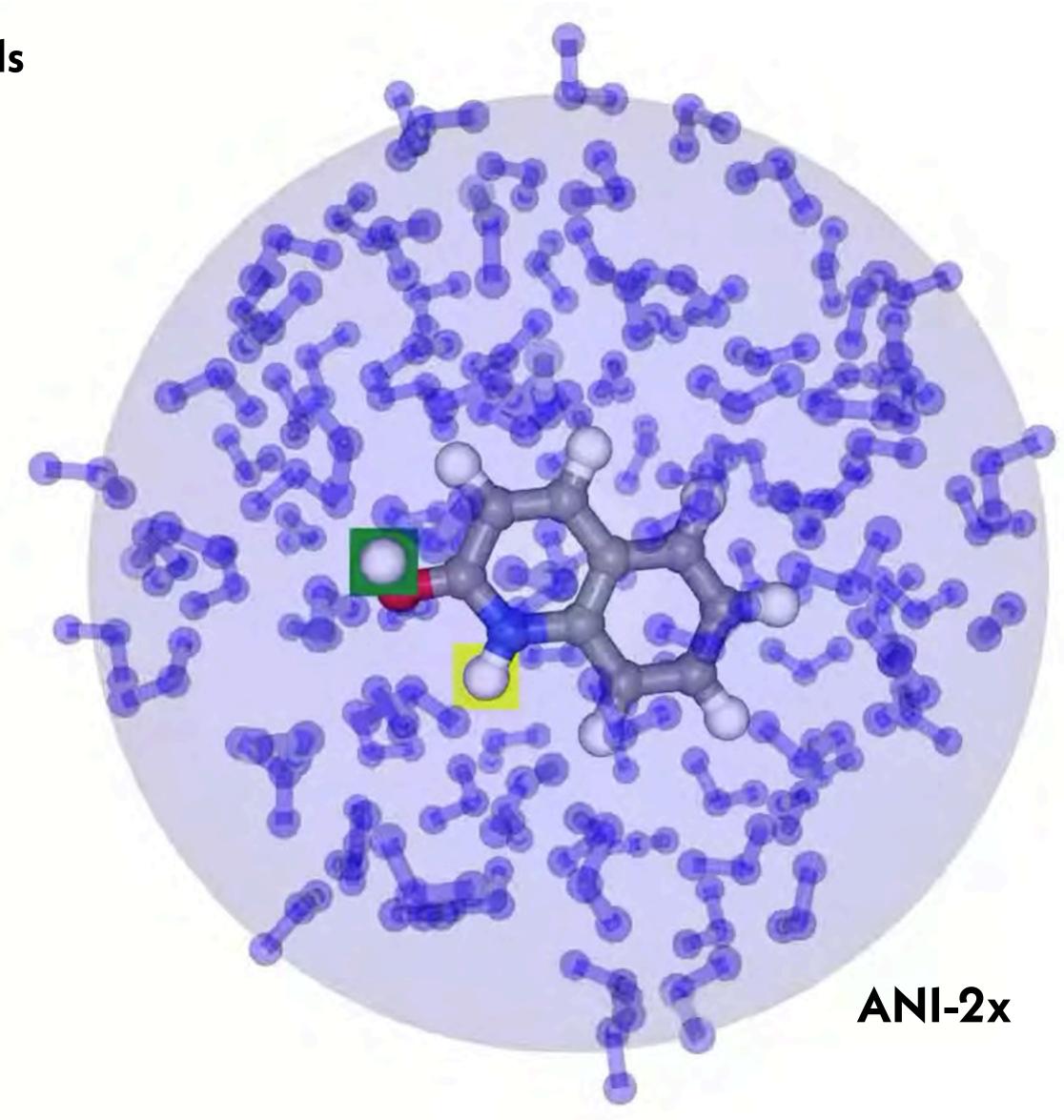
Potentials are free of singularities, so **simple linear alchemical potentials** can robustly compute alchemical free energies

$$U(x;\lambda) = (1-\lambda)U_{\lambda=0}(x) + \lambda U_{\lambda=1}(x)$$



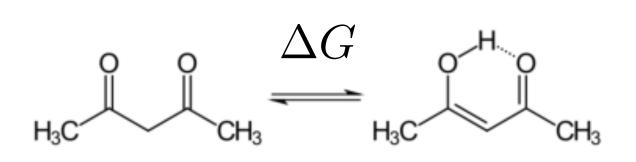
Simple atomic restraints can be used to improve efficiency by preventing atoms from flying away

preprint: https://doi.org/10.1101/2020.10.24.353318 code: https://github.com/choderalab/neutromeratio



QML POTENTIALS CAN LEARN FROM EXPERIMENTAL DATA TO IMPROVE PHYSICAL MODELS

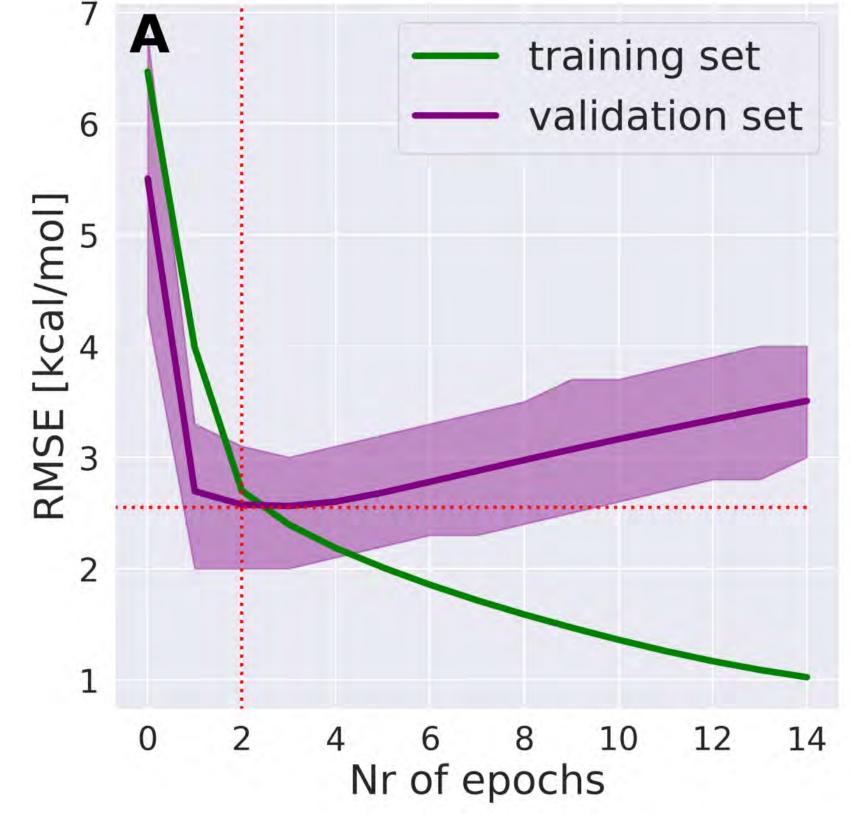
physical models are data-efficient: retraining on small number of experimental measurements improves accuracy and generalizes well

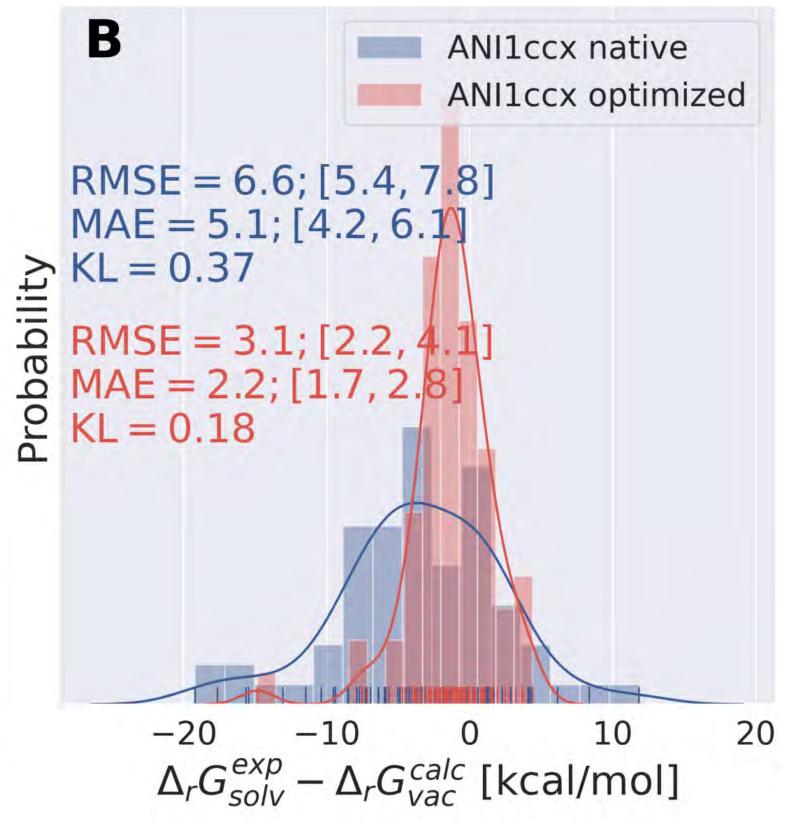


train: 221 tautomer pairs

validate: 57 tautomer pairs

test: 72 tautomer pairs





preprint: https://doi.org/10.1101/2020.10.24.353318
code: https://github.com/choderalab/neutromeratio

The MolSSI **Quantum Chemistry Archive**

A central source to compile, aggregate, query, and share quantum chemistry data.

GET STARTED!

FAIR Data

largest publicly available collection of quantum chemistry data. So far, it stores over ten million computations for the molecular sciences community.

Interactive Visualization

MolSSI hosts the QCArchive server, the Not only for computing and storing quantum chemistry computations at scale, but also for visualizing and understanding results as well.

Private Instances

The infrastructure behind QCArchive is fully open-souce. Spin up your own instance to compute private data and share only with collaborators.

102,477,973 MOLECULES

108,469,316

COLLECTIONS

http://qcarchive.molssi.org

OpenMM and the Open Force Field Initiative are working closely with MolSSI to expand the QCArchive to support the construction of next-generation machine learning force fields

SPICE DES Monomers Single Points Dataset v1.1	2021-11-15-QMDataset- DES-monomers-single- points	Single point energy calculation of DES monomers.	I, C, Br, P, Cl, H, S, O, F,
SPICE Solvated Amino Acids Single Points Dataset v1.1	2021-11-08-QMDataset- Solvated-Amino-Acids- single-points	Single point energy calculation of solvated amino acids.	N, S, O, C, H
SPICE DES370K Single Points Dataset v1.0	2021-11-08-QMDataset- DES370K-single-points	SPICE single point dataset for ML applications.	'N', 'O', 'Mg', 'H', 'F', 'K', 'Br', 'Na', 'P', 'Cl', 'l', 'Ca', 'S', 'Li', 'C'
SPICE DES370K Single Points Dataset Supplement v1.0	2022-02-18-QMDataset- DES370K-single-points- supplement	SPICE single point dataset for ML applications.	F, H, Cl, S, I, Br, N, Li, O, C, Na
SPICE Dipeptides Single Points Dataset v1.2	2021-11-08-QMDataset- Dipeptide-single-points	SPICE single point dataset for ML applications.	C ,N ,O ,H ,S
SPICE PubChem Set 1 Single Points Dataset v1.2	2021-11-08-QMDataset- pubchem-set1-single-points	SPICE single point dataset for ML applications.	'O', 'Cl', 'N', 'C', 'P', 'Br',
SPICE PubChem Set 2 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set2-single-points	SPICE single point dataset for ML applications.	'H', 'P', 'C', 'Cl', 'Br', 'N', 'F', 'S', 'O', 'I'
SPICE PubChem Set 3 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set3-single-points	SPICE single point dataset for ML applications.	'N', 'C', 'S', 'Cl', 'Br', 'F', 'P', 'I', 'H', 'O'
SPICE PubChem Set 4 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set4-single-points	SPICE single point dataset for ML applications.	'N', 'S', 'Br', 'O', 'C', 'F', 'H', 'I', 'CI', 'P'
SPICE PubChem Set 5 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set5-single-points	SPICE single point dataset for ML applications.	'F', 'H', 'S', 'Br', 'Cl', 'N', 'P', 'C', 'I', 'O'
SPICE PubChem Set 6 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set6-single-points	SPICE single point dataset for ML applications.	'Cl', 'O', 'N', 'H', 'C', 'P', 'S', 'F', 'Br', 'I'

https://github.com/openmm/spice-dataset

CAN WE CHANGE PRACTICE IN STRUCTURE-ENABLED DRUG DISCOVERY BY LEVERAGING DATA WE GENERATE?

week 1

week 2

2021

MON	TUE	WED	тни	FRI	SAT	SUN
designs/ predictions	synthesis			new data		

MON	TUE	WED	THU	FRI	SAT	SUN
designs/ predictions	synthesis			new data		

using published force field model

using the same published force field model! we haven't learned anything from the data

week 1

week 2

2025

MON	TUE	WED	тни	FRI	SAT	SUN
designs/ predictions 1.0	synthesis			new data	build mo	odel 2.0!

MON	TUE	WED	THU	FRI	SAT	SUN
designs/ predictions 2.0	synthesis					

using force field model built from public + private data using new model tuned to target from first week's data

* Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share

- * Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share
- * QML/MM hybrid simulations will bring a revolution in the accuracy and utility of structure-based design—if we can make them fast enough

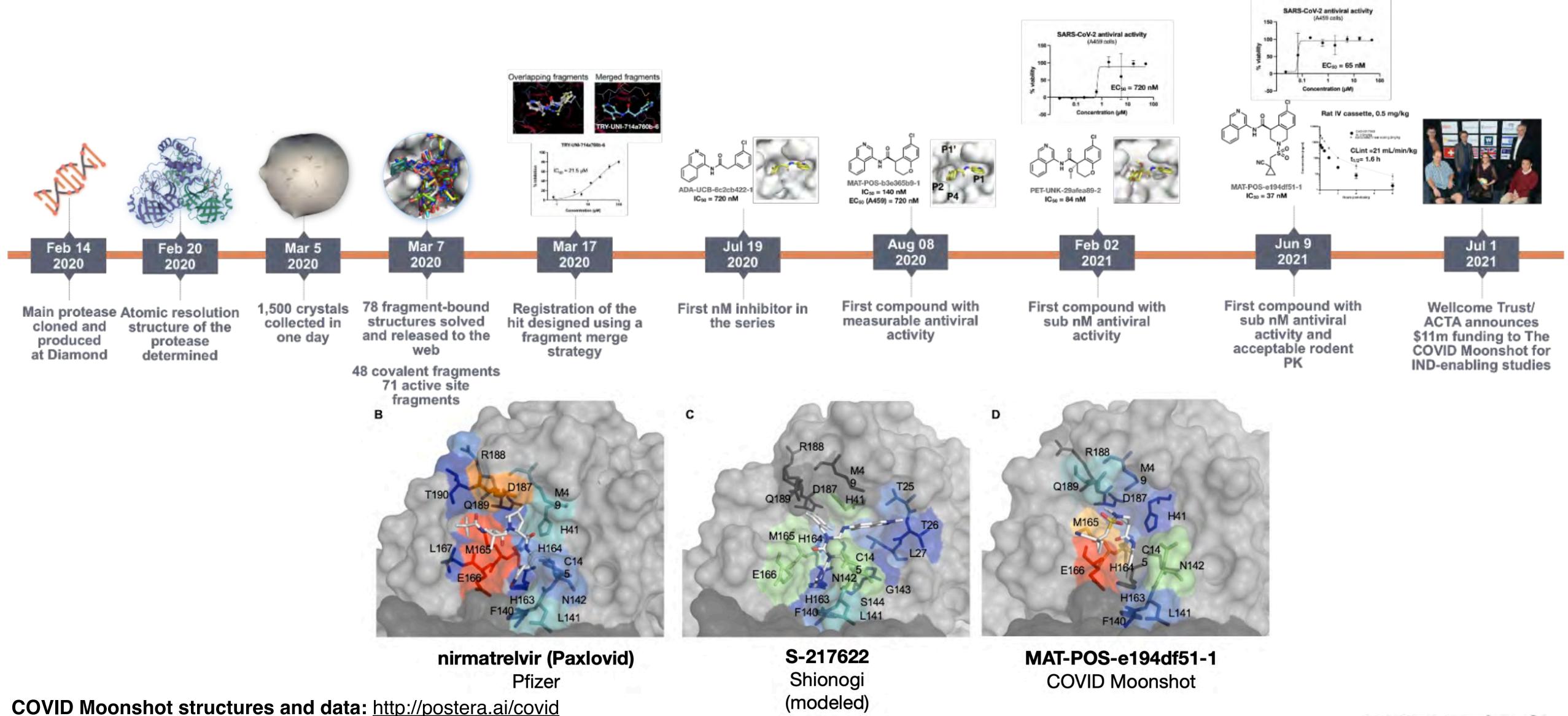
- * Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share
- * QML/MM hybrid simulations will bring a revolution in the accuracy and utility of structure-based design—if we can make them fast enough
- * QML/MM free energy calculations can learn from project data, enabling biotech to extract much more value from their data—if we can make them easy to train

- * Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share
- * QML/MM hybrid simulations will bring a revolution in the accuracy and utility of structure-based design—if we can make them fast enough
- * QML/MM free energy calculations can learn from project data, enabling biotech to extract much more value from their data—if we can make them easy to train
- * Hybrid combinations of ML for short-range and MM for long-range will deliver significant systematic accuracy improvements—if we can make them practical

- * Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share
- * QML/MM hybrid simulations will bring a revolution in the accuracy and utility of structure-based design—if we can make them fast enough
- * QML/MM free energy calculations can learn from project data, enabling biotech to extract much more value from their data—if we can make them easy to train
- * Hybrid combinations of ML for short-range and MM for long-range will deliver significant systematic accuracy improvements—if we can make them practical
- * ML collective variables will drive a revolution in sampling—if we can make it easy to go between MD and ML frameworks

- * Quantum machine learning (QML) will replace QM pretty much everywhere, bringing a revolution in accuracy—if we can make them easy to build, use, and share
- * QML/MM hybrid simulations will bring a revolution in the accuracy and utility of structure-based design—if we can make them fast enough
- * QML/MM free energy calculations can learn from project data, enabling biotech to extract much more value from their data—if we can make them easy to train
- * Hybrid combinations of ML for short-range and MM for long-range will deliver significant systematic accuracy improvements—if we can make them practical
- * ML collective variables will drive a revolution in sampling—if we can make it easy to go between MD and ML frameworks
- * ML potentials are a solution for multiscale simulations—if we can facilitate exchange between MD and ML frameworks

The open science COVID Moonshot produced a novel noncovalent, non-peptidomimetic oral antiviral from a fragment screen in just 18 months



preprint: https://www.biorxiv.org/content/10.1101/2020.10.29.339317v3.abstract

history: https://www.nature.com/articles/d41586-021-01571-1

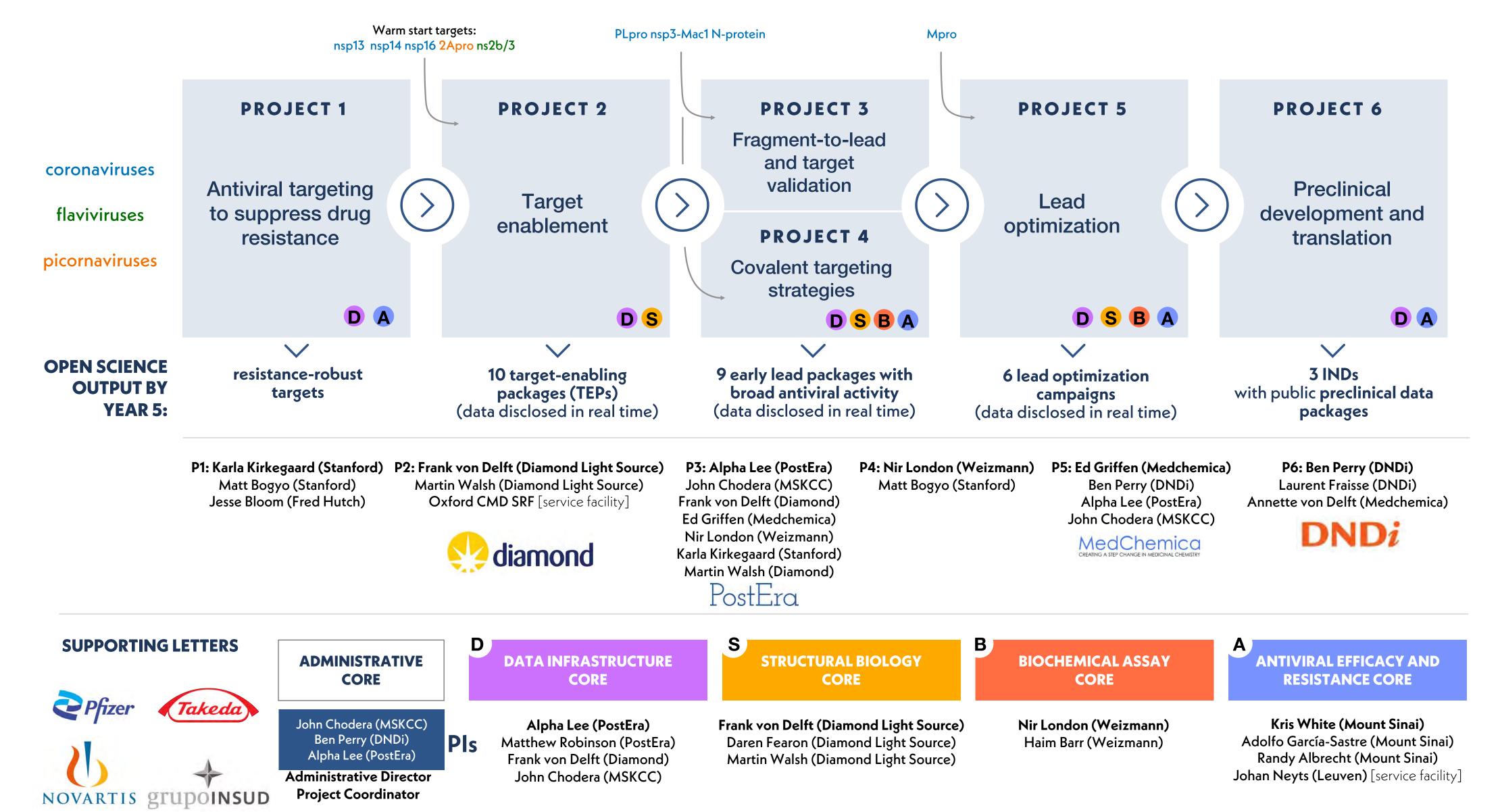
COVID Moonshot

Drugs for Neglected Diseases initiative

We are negotiating a straight to generics route with multiple generics manufacturers

We have a path to go "straight to generics" (potentially entirely free of patents) to enable global, affordable, and accessible access to meet the needs of underserved LMICs

The Moonshot team has been funded as an NIH Antiviral Drug Discovery (AViDD) Center to pursue the same strategy to produce novel antivirals for future pandemics



ASAP Discovery website: http://asapdiscovery.org

PREPRINTS AND CODE

gimlet: graph convolutional networks for partial charge assignment

preprint: https://arxiv.org/abs/1909.07903

code: http://github.com/choderalab/gimlet

espaloma: end-to-end differentiable assignment of force field parameters

preprint: https://arxiv.org/abs/2010.01196

code: https://github.com/choderalab/espaloma

amlify: hybrid QML/MM alchemical free energy calculations for protein-ligand binding

preprint: https://doi.org/10.1101/2020.07.29.227959

code: https://github.com/choderalab/qmlify

neutromeratio: alchemical free energy calculations with fully QML potentials for tautomer ratio prediction

preprint: https://doi.org/10.1101/2020.10.24.353318

code: https://github.com/choderalab/neutromeratio

of Health

SCHRÖDINGER.

Scientific Advisor: OpenEye, Foresite Labs

STARR CANCER CONSORTIUM

All funding: http://choderalab.org/funding