

TEACHING FREE ENERGY CALCULATIONS TO LEARN

John D. Chodera MSKCC Computational and Systems Biology Program Sildes will be posted to <u>http://www.choderalab.org/news</u>

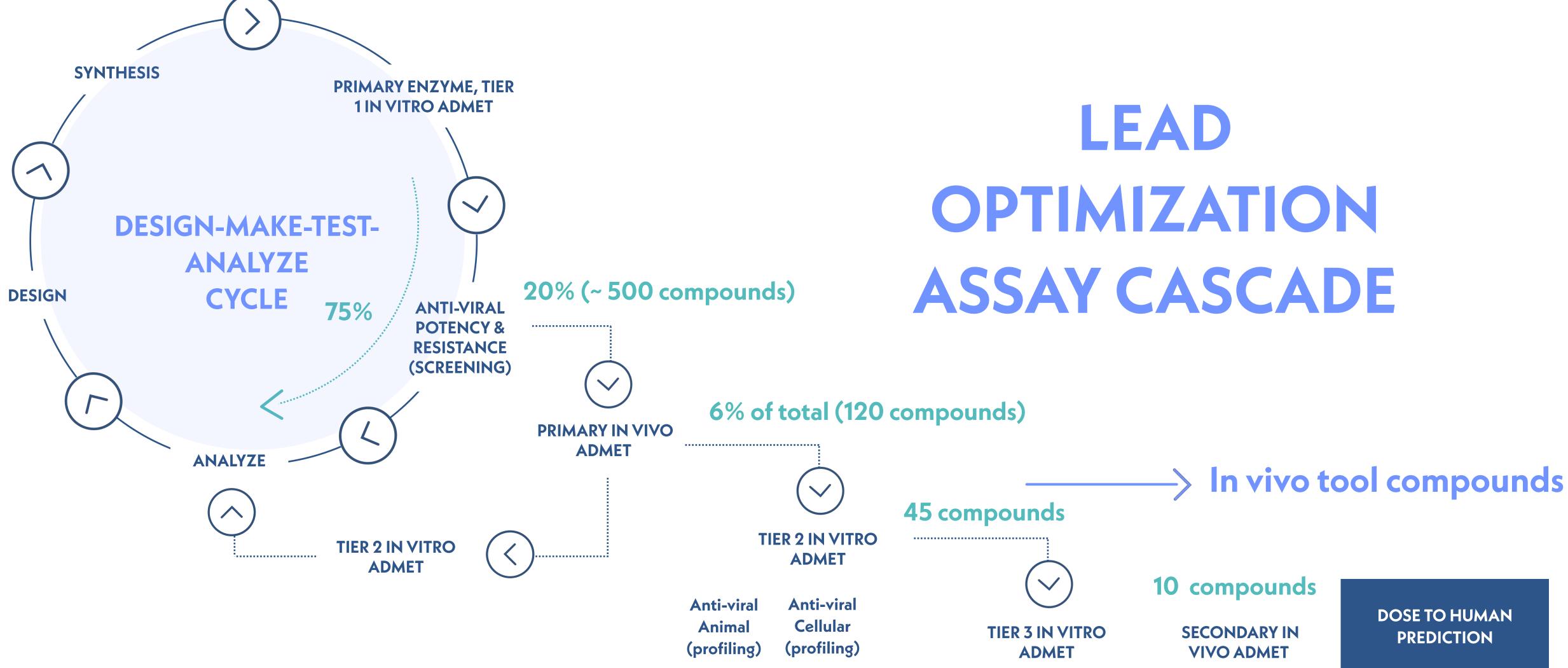
DISCLOSURES:

Scientific Advisory Board, OpenEye Scientific, Redesign Science*, Interline Therapeutics*, Ventus Therapeutics All funding sources: <u>http://choderalab.org/funding</u>

* Denotes equity interests

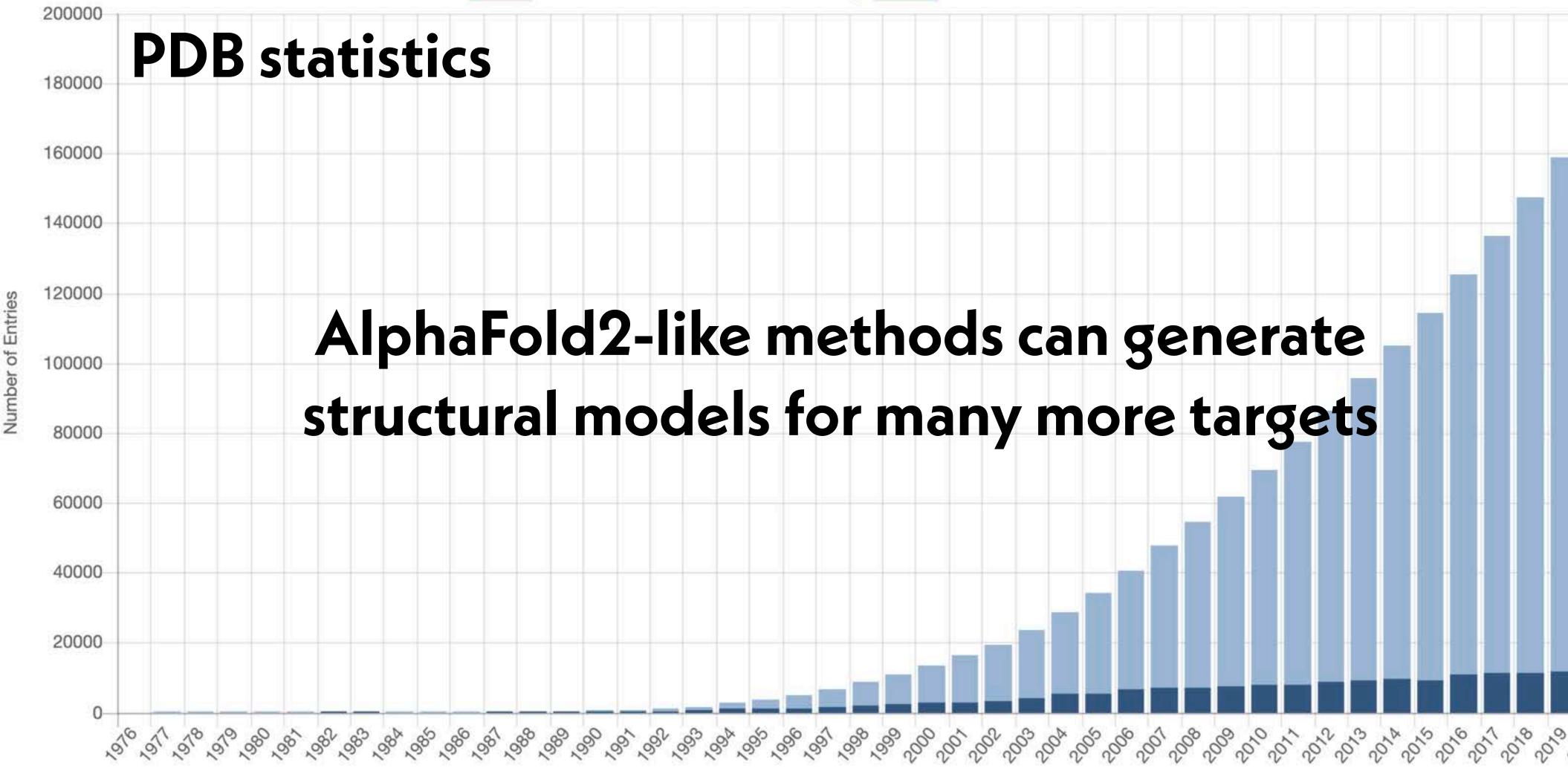
29 Apr 2022 - ICML MLDD - Cyberspace

MODELS TO STEER DESIGN-MAKE-TEST-ANALYZE CYCLES CAN DIRECTLY IMPACT DISCOVERY PROGRAMS



STRUCTURAL DATA IS NOW AN ABUNDANT RESOURCE FOR DRUG DISCOVERY

Number of Structures Released Annually



http://www.rcsb.org/stats

Total Number of Entries Available

AlphaFold2-like methods can generate structural models for many more targets

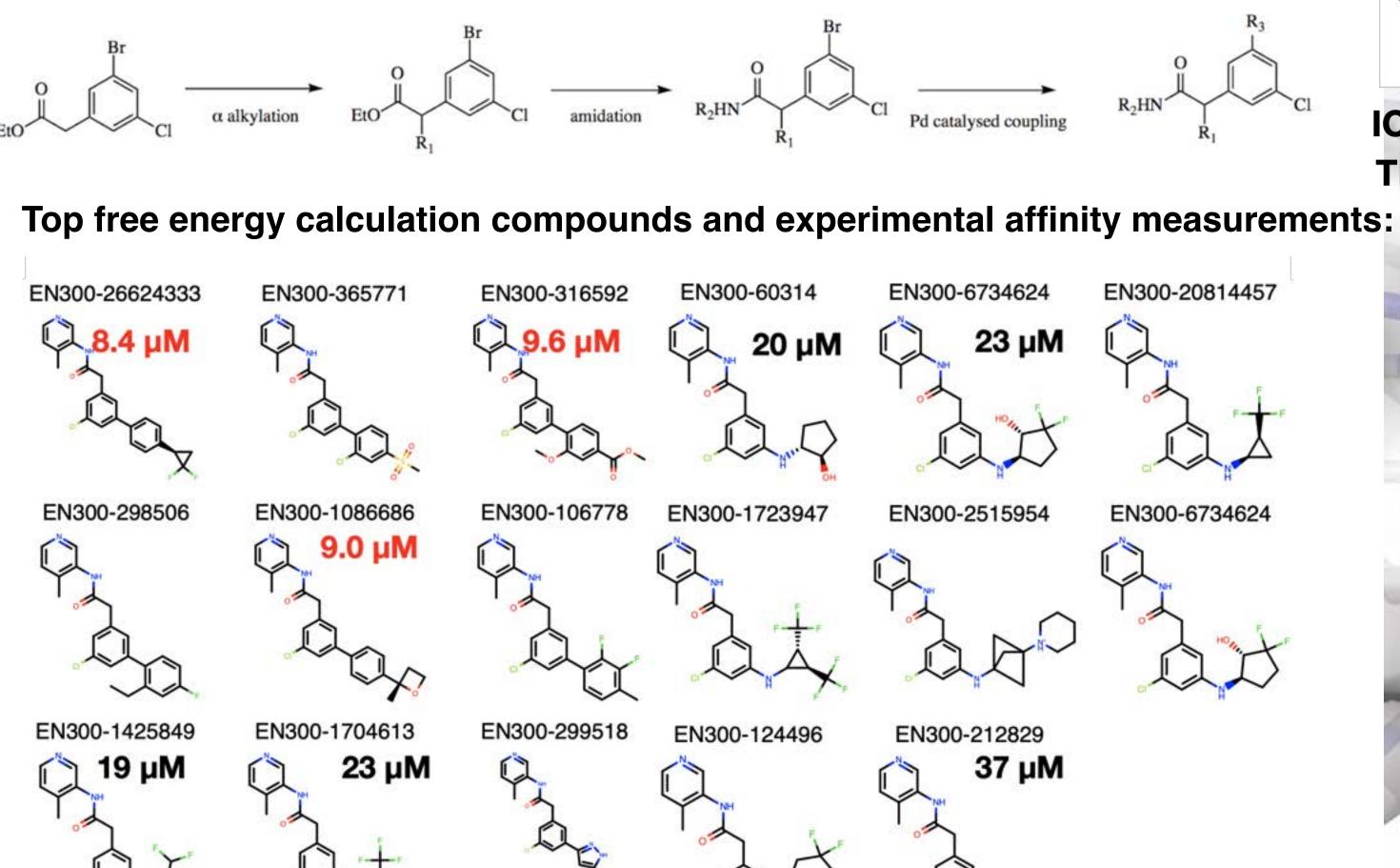
last decade

202

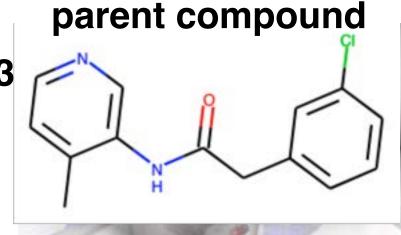
Year

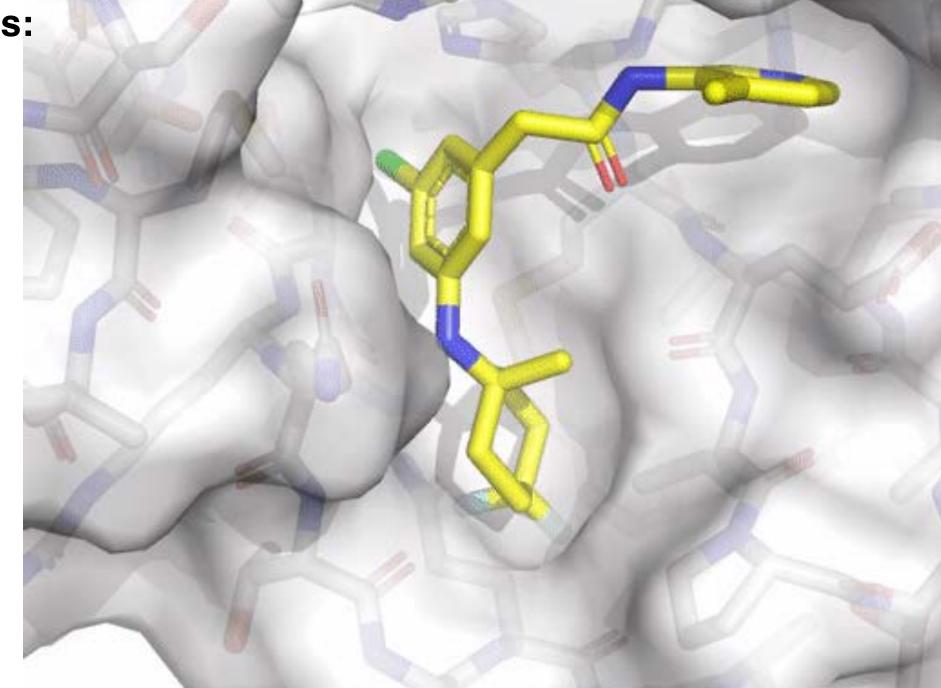
WE COMMONLY NEED TO MAKE DECISIONS BETWEEN MANY RELATED SYNTHETICALLY FEASIBLE ANALOGUES

Can we engage S4 from this 5,000-compound virtual synthetic library varying R3



COVID Moonshot: [Moonshot] [Fragalysis] [Dashboard]

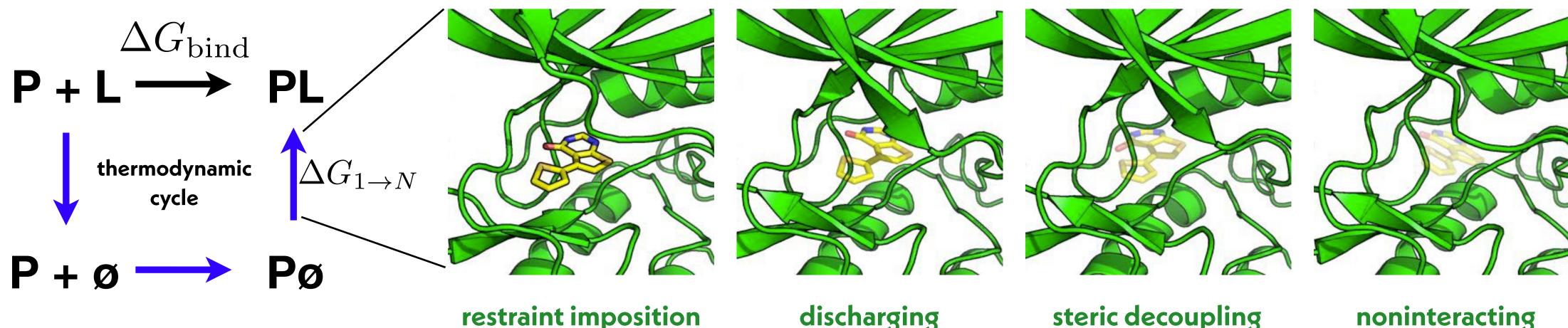




top compounds from free energy calculations

ALCHEMICAL FREE ENERGY CALCULATIONS HAVE PROVEN TO BE A USEFUL WAY TO EXPLOIT STRUCTURAL DATA TO PREDICT AFFINITIES

simulations of alchemical intermediates with attenuated interactions



$$\Delta G_{1 \to N} = -\beta^{-1} \ln \frac{Z_N}{Z_1} = -\beta^{-1} \ln \frac{Z_2}{Z_1}$$

Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, Schrödinger, and many more

 Z_3

 Z_{2}

discharging

 Z_N

steric decoupling

noninteracting

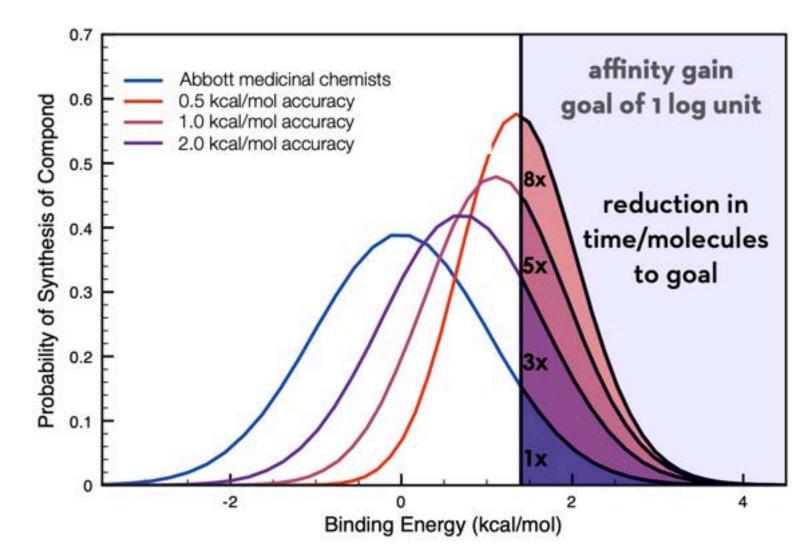
Includes all contributions from enthalpy and entropy of binding to a flexible receptor

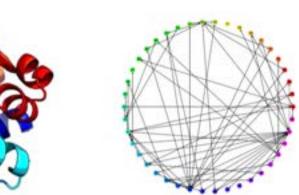
$$Z_n = \int dx \, e^{-eta U_n(x)}$$
 par

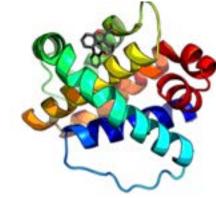
rtition function

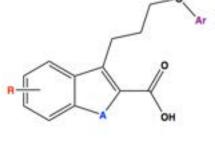
CURRENT ACCURACIES ARE SUFFICIENT TO ACCELERATE DISCOVERY, BUT HOW CAN WE GO FURTHER? RELATIVE ABSOLUTE

 $\Delta\Delta G RMSE ~ 1.4 kcal/mol$ for well-behaved* proteins/chemistries: **3-5x reduction** in molecules synthesized

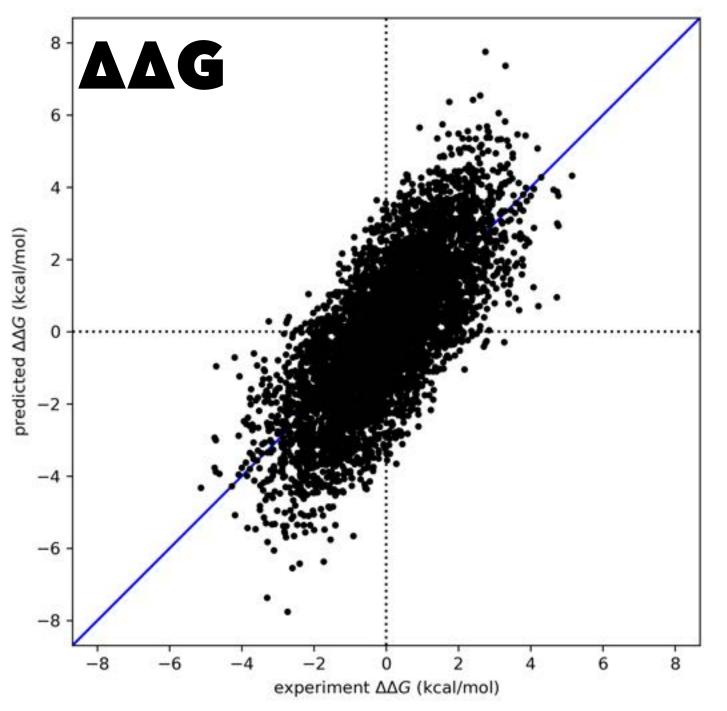




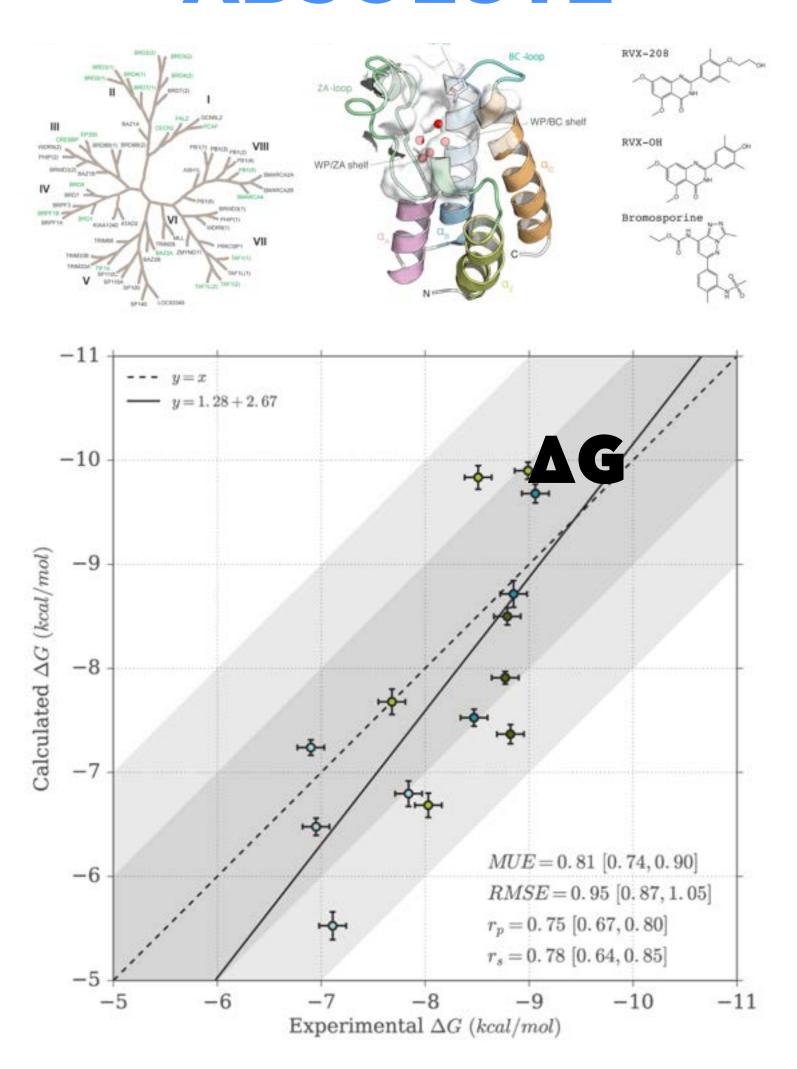




all within-target pairs $\Delta\Delta G$ (N = 5620) 1.37 [95%: 1.34, 1.39] kcal/mol RMSE: OPLS 1.09 [95%: 1.07, 1.11] kcal/mol 0.10 [95%: 0.06, 0.15] kcal/mol MUE : OPLS R2 : OPLS 0.73 [95%: 0.72, 0.74] kcal/mol rho : OPLS

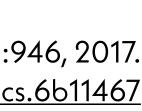


Wang et al. (Schrödinger) JACS 137:2695, 2015 https://doi.org/10.1021/ja512751q Reanalysis: <u>http://github.com/jchodera/jacs-dataset-analysis</u>



Aldeghi et al. JACS 139:946, 2017. https://doi.org/10.1021/jacs.6b11467

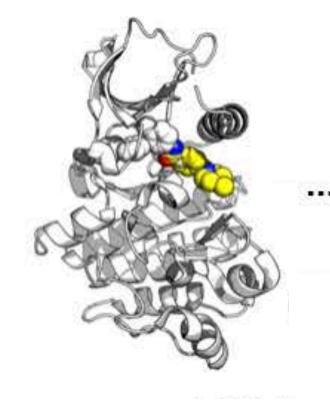
*best-case scenarios!



ALCHEMICAL FREE ENERGY CALCULATIONS HAVE A BROAD DOMAIN OF APPLICABILITY

driving affinity / potency

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 https://doi.org/10.1021/acs.jcim.0c00900



driving selectivity

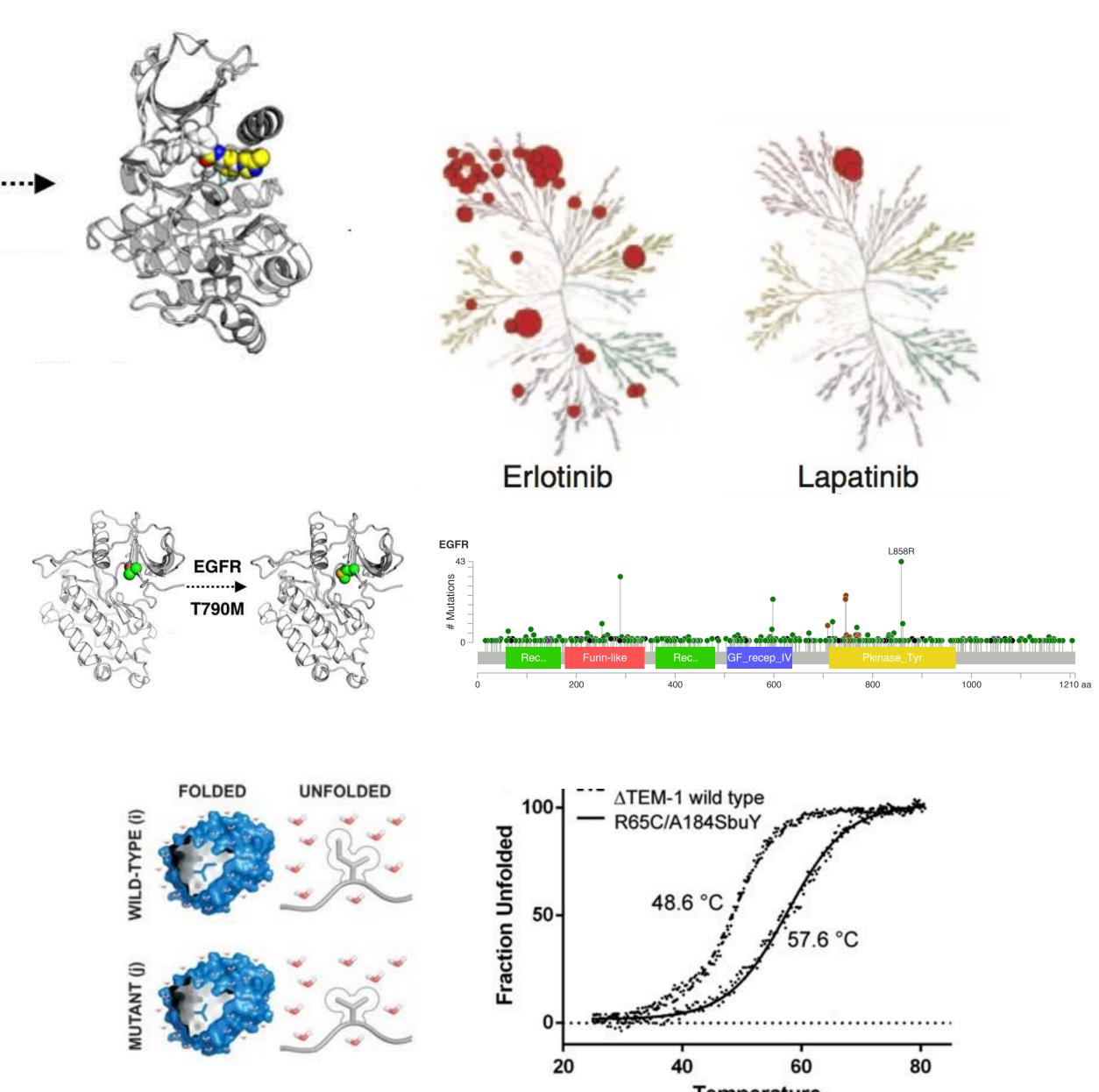
Moraca, Negri, de Olivera, Abel JCIM 2019 https://doi.org/10.1021/acs.jcim.9b00106 Aldeghi et al. JACS 139:946, 2017. https://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity

Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang. Communications Biology 1:70, 2018 <u>https://doi.org/10.1038/s42003-018-0075-x</u> Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018 <u>https://doi.org/10.1021/acscentsci.8b00717</u>

optimizing thermostability

Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016 <u>https://doi.org/10.1002/anie.201510054</u>



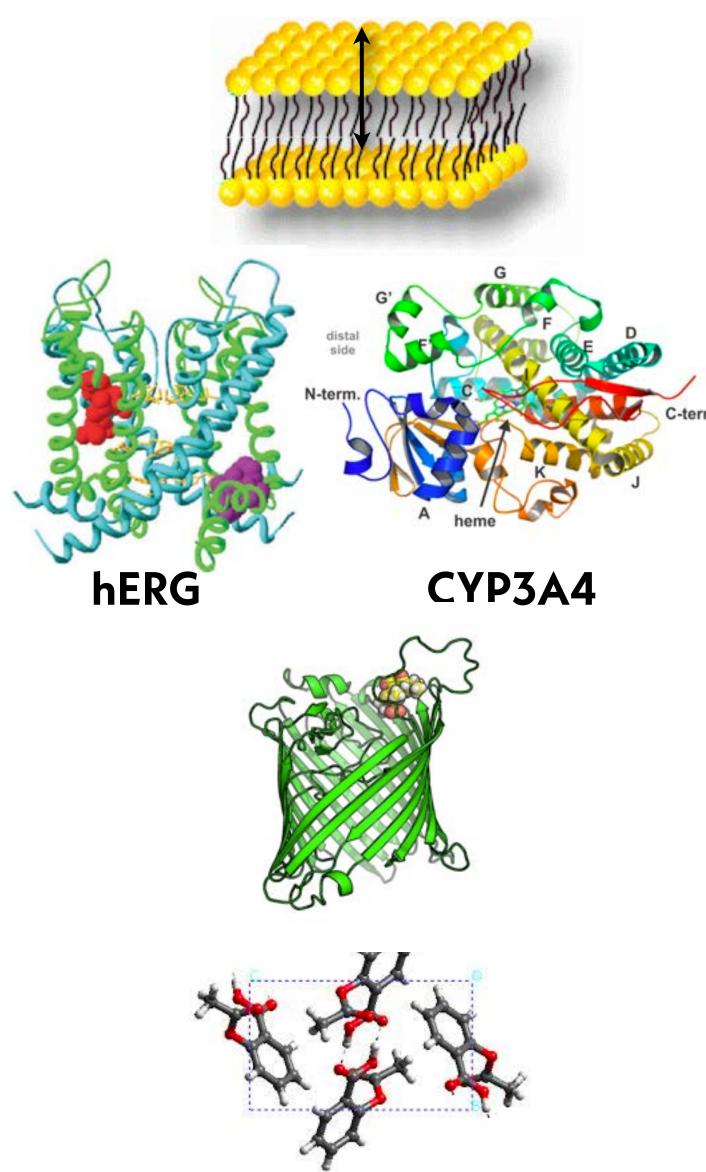
...AND HOLD THE POTENTIAL FOR EVEN BROADER APPLICABILITY AS MORE STRUCTURAL DATA EMERGES

partition coefficients (logP, logD) and permeabilities

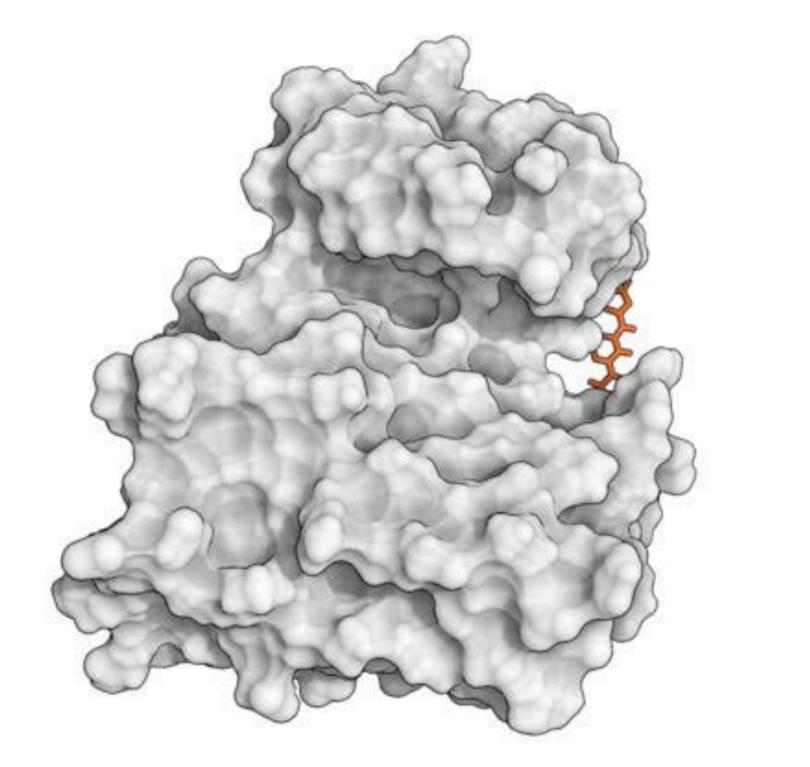
structure-enabled ADME/Tox targets

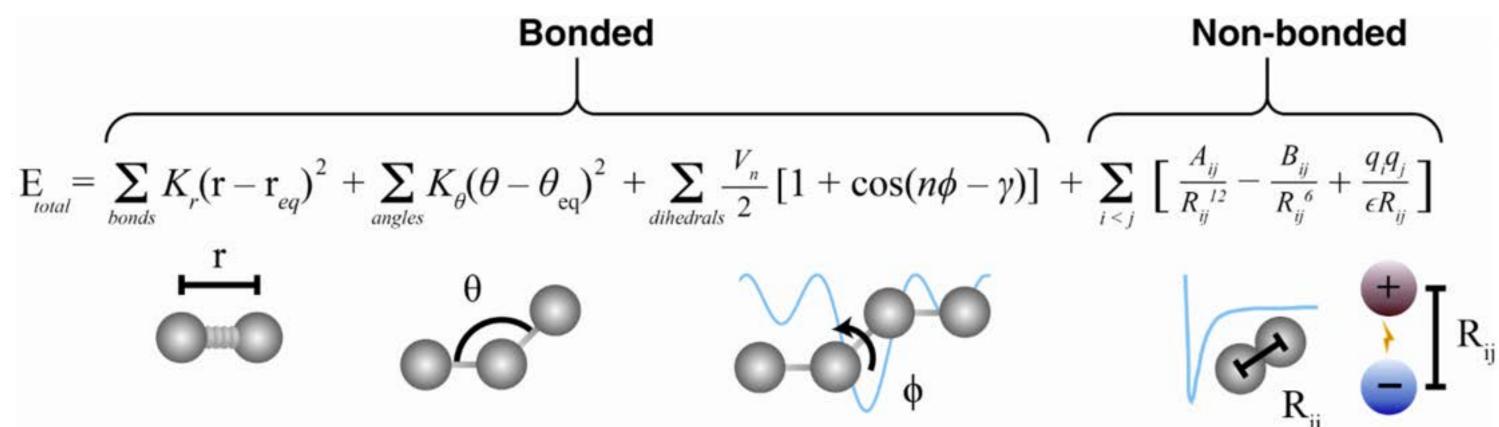
porin permeation

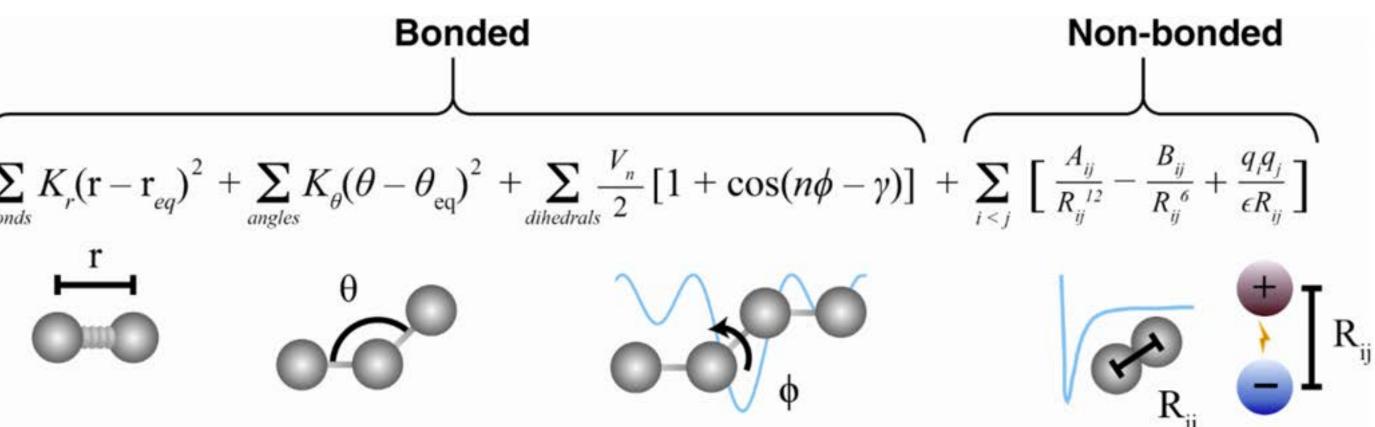
crystal polymorphs, etc.



FREE ENERGY CALCULATIONS (AND MUCH OF COMP CHEM) FUNDAMENTALLY RELIES ON MOLECULAR MECHANICS FORCE FIELDS







Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011 Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

typical class I molecular mechanics force field

FORCE FIELDS HAVE TRADITIONALLY BEEN HEROIC PRODUCTS OF HUMAN EFFORT

experimental data quantum chemistry keen chemical intuition

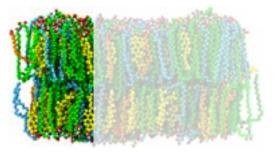
a parameter set we desperately hope someone actually uses

heroic effort by graduate students and postdocs

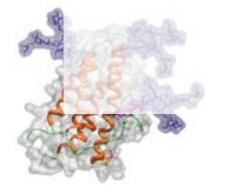
FORCE FIELDS HAVE TRADITIONALLY BEEN HEROIC PRODUCTS OF HUMAN EFFORT Amber20 recommendations proteins

post-translational modifications

Quickly adds up to >100 h ions



lipids



carbohydrates

J. A. Maier; C. Martinez; K. Kasavajhala; L. Wickstrom; K. E. Hauser; C. Simmerling. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.

W. D. Cornell; P. Cieplak; C. I. Bayly; I. R. Gould; K. M. Merz, Jr.; D. M. Ferguson; D. C. Spellmeyer; Approximate around force field for the simulation of proteins, nucleic

A. H. C. Horn; H. Lang; H. Sticht. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohisti-J. Mol. Model., 2006, 12, 281–289.

H. W. Horn; W. C. Swope; J. W. Pitera; J. D. Madura; T. J. Dick; G. L. Hura; T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 2004, 120,

- Intended to be compatible, but not co-parameterized fic ion parameters. J. Phys. Chem. B, 2009, 113, 13279-
- Significant effort is required to extend to new areas in Explicit Solvent. J. Chem. Theory Comput., 2013, 9,
- (e.g. covalent inhibitors, bio-inspired polymers, etc.) 1157-1174.
- Nobody is going to want to refit this based on some new data. J. Chem. Theory Comput., 2016,

A. Perez; I. Marchan; D. Svozil; J. Sponer; T. E. Cheatham; C. A. Laughton; M. Orozco. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. Biophys. J. 2007, 92, 3817–3829.

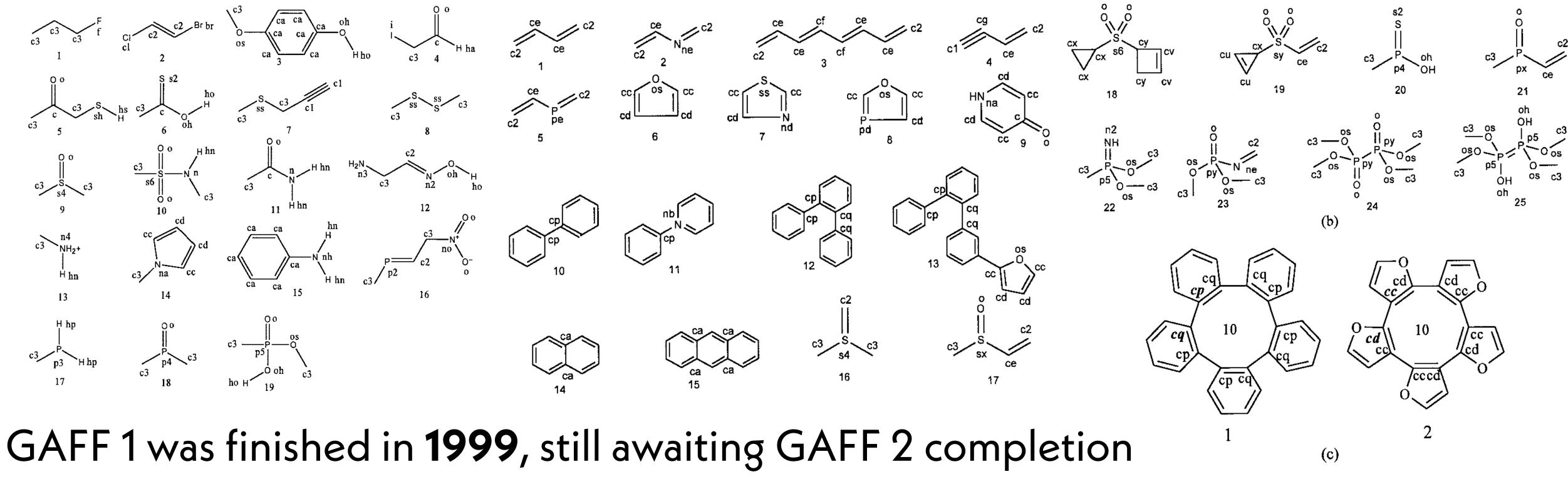
M. Zgarbova; M. Otyepka; J. Sponer; A. Mladek; P. Banas; T. E. Cheatham; P. Jurecka. Refinement of the How can we bring this problem into the modern era?

> Å. Skjevik; B. D. Madej; R. C. Walker; K. Teigen. Lipid11: A modular framework for lipid simulations using amber. J. Phys. Chem. B, 2012, 116, 11124-11136.

> C. J. Dickson; B. D. Madej; A. A. Skjevik; R. M. Betz; K. Teigen; I. R. Gould; R. C. Walker. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput., 2014, 10, 865-879.

> K. N. Kirschner; A. B. Yongye; S. M. Tschampel; J. González-Outeiriño; C. R. Daniels; B. L. Foley; R. J. Woods. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem., 2008, 29 622-655

AS DRUG DISCOVERY EXPLORES NEW PARTS OF CHEMICAL SPACE, HOW CAN FORCEFIELDS KEEP UP?



Extension to new chemical space is nontrivial Parameter fitting code was never released Atom types have introduced numerous errors

The Generalized Amber Forcefield (GAFF) only understands this space of chemistries:

Wang J, Wolf RM, Caldwell JW, Kollman PA, and Case DA. J Comput Chem 25:1157, 2004.

CAN WE MAKE BUILDING BIMOLECULAR FORCE FIELDS AS EASY AS TRAINING A MACHINE LEARNING MODEL?

training a neural network

```
00
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
                                                            fit it
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
                                                             use it
                Try in Google's interactive notebook
  Run code now
```

https://www.tensorflow.org/overview

import your tools

grab a standard, curated dataset

define a novel model architecture

declare your objectives in training it fit it use it

CAN WE MAKE BUILDING BIMOLECULAR FORCE FIELDS AS EASY AS TRAINING A MACHINE LEARNING MODEL?

training a neural network

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
             loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
```

Try in Google's interactive notebook

https://www.tensorflow.org/overview

Run code now

fitting a force field

```
import openforcefield as off
training_data, benchmark_data = off.datasets.load('2019-Q1')
force_field_model = off.models.ForceFieldModel([
    off.models.forces.HarmonicBond(),
   off.models.forces.HarmonicAngle(),
   off.models.forces.PeriodicTorsion(max_order=6),
   off.models.forces.LennardJones(),
    off.models.forces.BondChargeCorrections(),
])
model.compile(optimizer='L-BFGS',
     loss='error-weighted',
     metrics=['accuracy'])
model.fit(training_data)
model.evaluate(test_data)
```

Run code now

Try in Google's interactive notebook

60

An open and collaborative approach to better force fields

Software permissively licensed under the MIT License and developed openly on GitHub.

Scientific reports as blog posts, webinars and preprints

NEWS

open forcefield

OPEN DATA

Curated quantum chemical and experimental datasets used to parameterize and benchmark Open Force Fields.

TUTORIALS

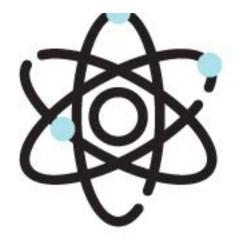
ROADMAP

THE OPEN FORCE FIELD INITIATIVE AIMS TO BUILD A **MODERN INFRASTRUCTURE FOR FORCE FIELD SCIENCE**

Open source Python Toolkit: use the parameters in most simulation packages

Open curated QM / physical property datasets: build your own force fields MoISSI QCArchive quantum chemical data: <u>http://qcarchive.molssi.org</u>

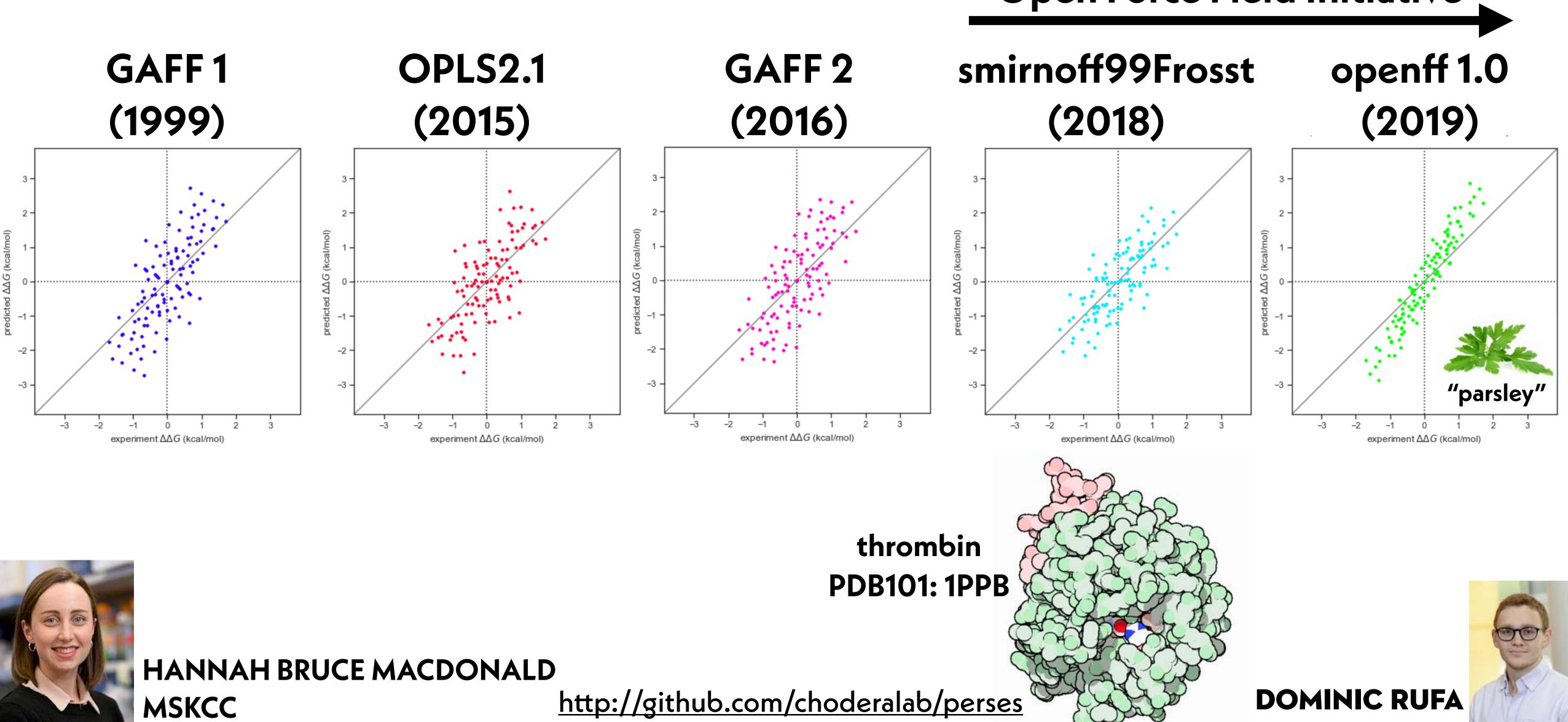
Open source infrastructure: for improving force fields with in-house data



Open science: everything we do is free, permissively licensed, and online

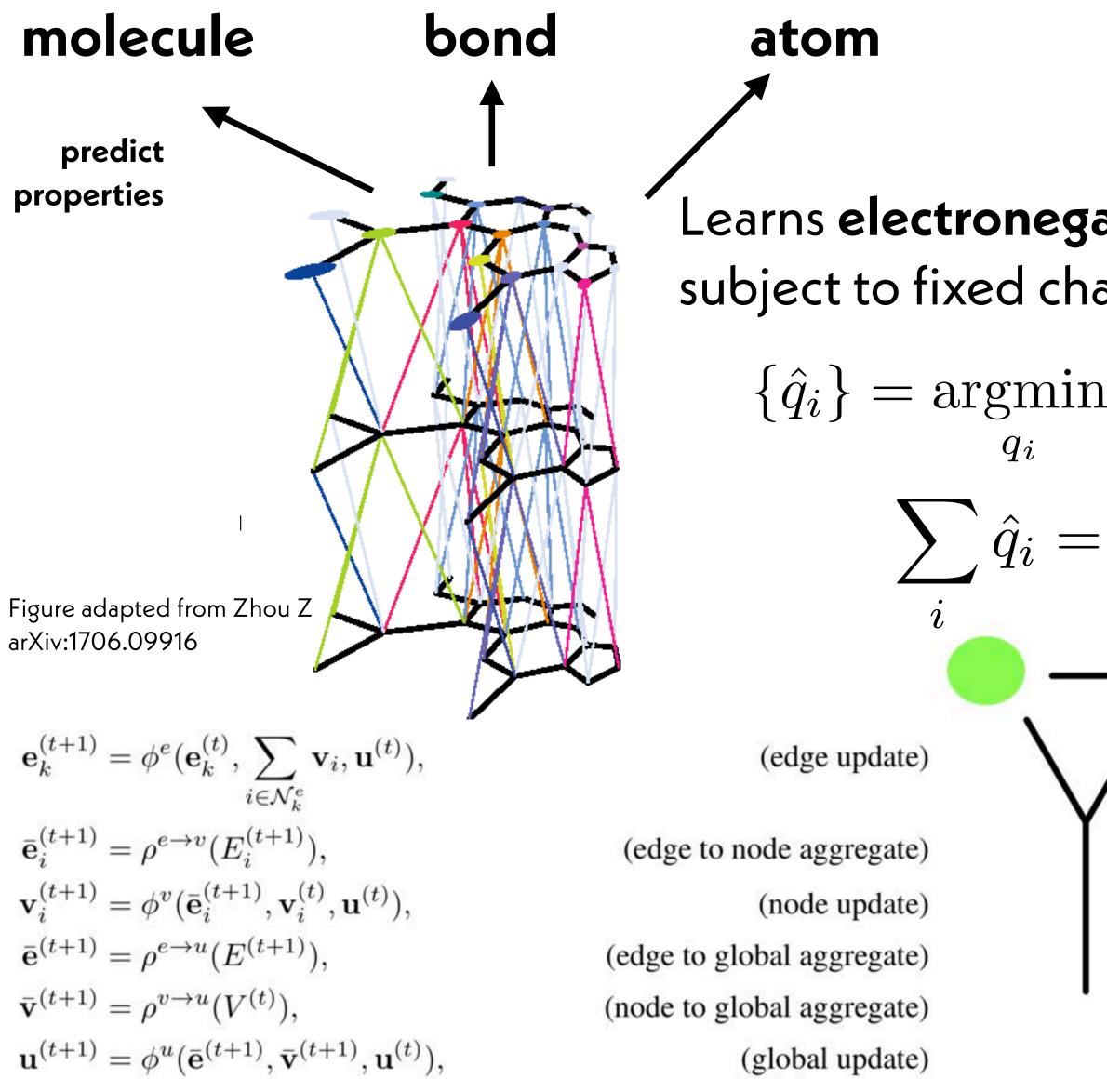
http://openforcefield.org

WE'VE MADE RAPID AND SIGNIFICANT PROGRESS IN ACCURACY, **BUT WE'RE STILL STICK WITH SLOW GENERATIONS**



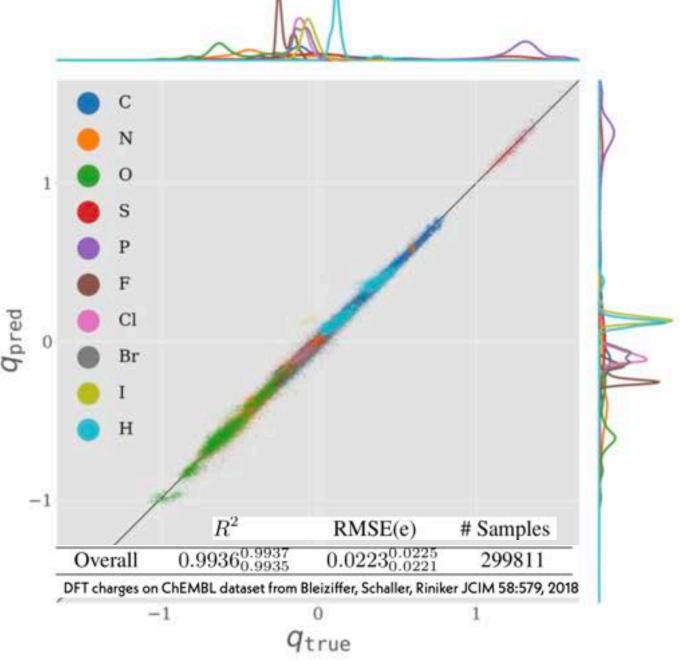
Open Force Field Initiative

NEW GENERATIONS OF MACHINE LEARNING MODELS ARE PARTICULARLY WELL-SUITED TO CHEMISTRY



Learns electronegativity (e_i) and hardness (s_i) subject to fixed charge sum constraint:

$$\sum_{i} \frac{\hat{e}_{i}q_{i} + \frac{1}{2}\hat{s}_{i}q_{i}^{2}}{\sum_{i} q_{i} = Q}$$



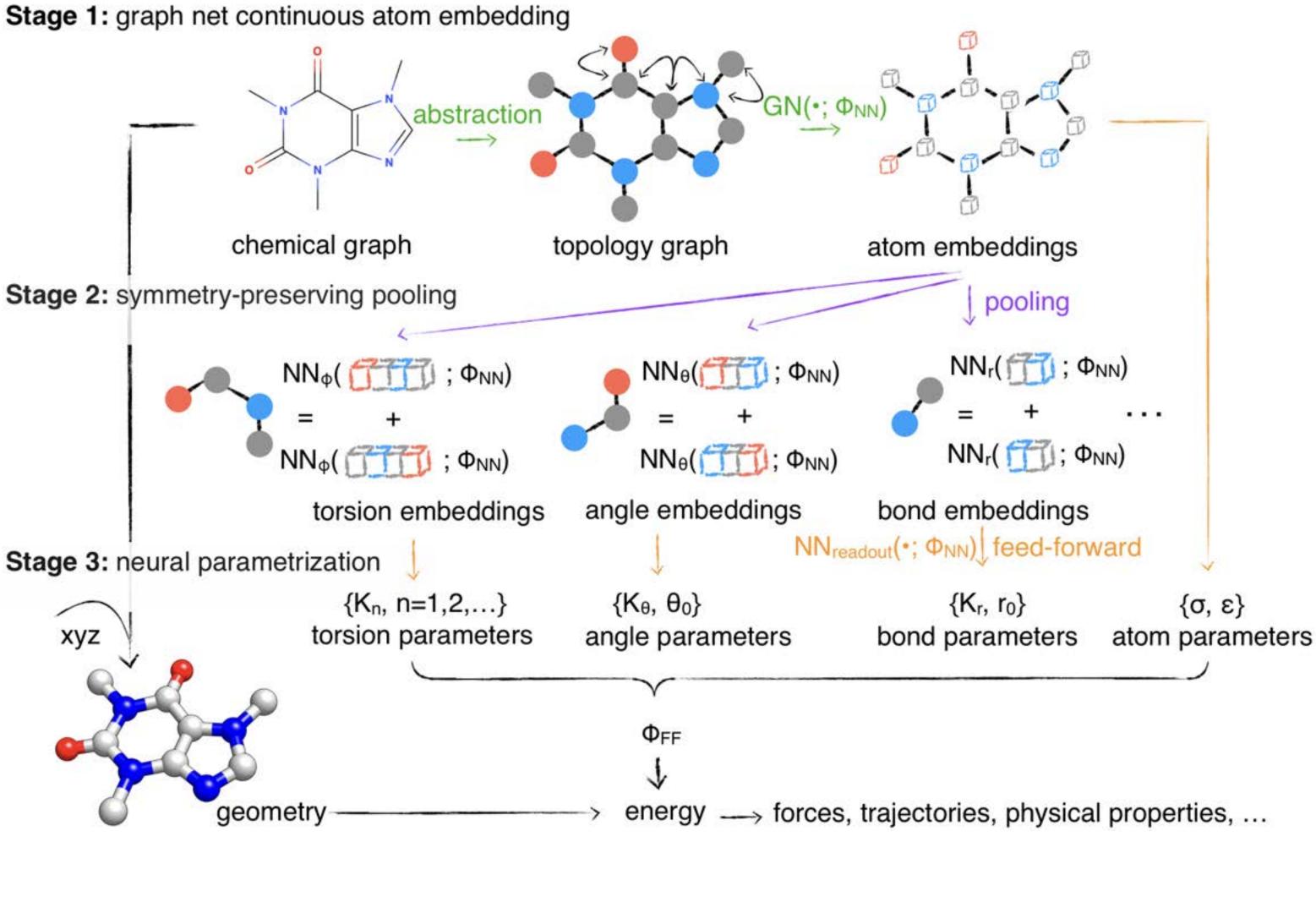
control experiment: direct prediction of charges: RMSE 0.2800 e

Graph Inference on MoLEcular Topology

preprint: https://arxiv.org/abs/1909.07903 **code**: <u>http://github.com/choderalab/gimlet</u>

espaloma: extensible surrogate potential of ab initio learned and optimized by message-passing algorithm

use of only **chemical graph** means that model can generate parameters for small molecules, proteins, nucleic acids, covalent ligands, carbohydrates, etc.



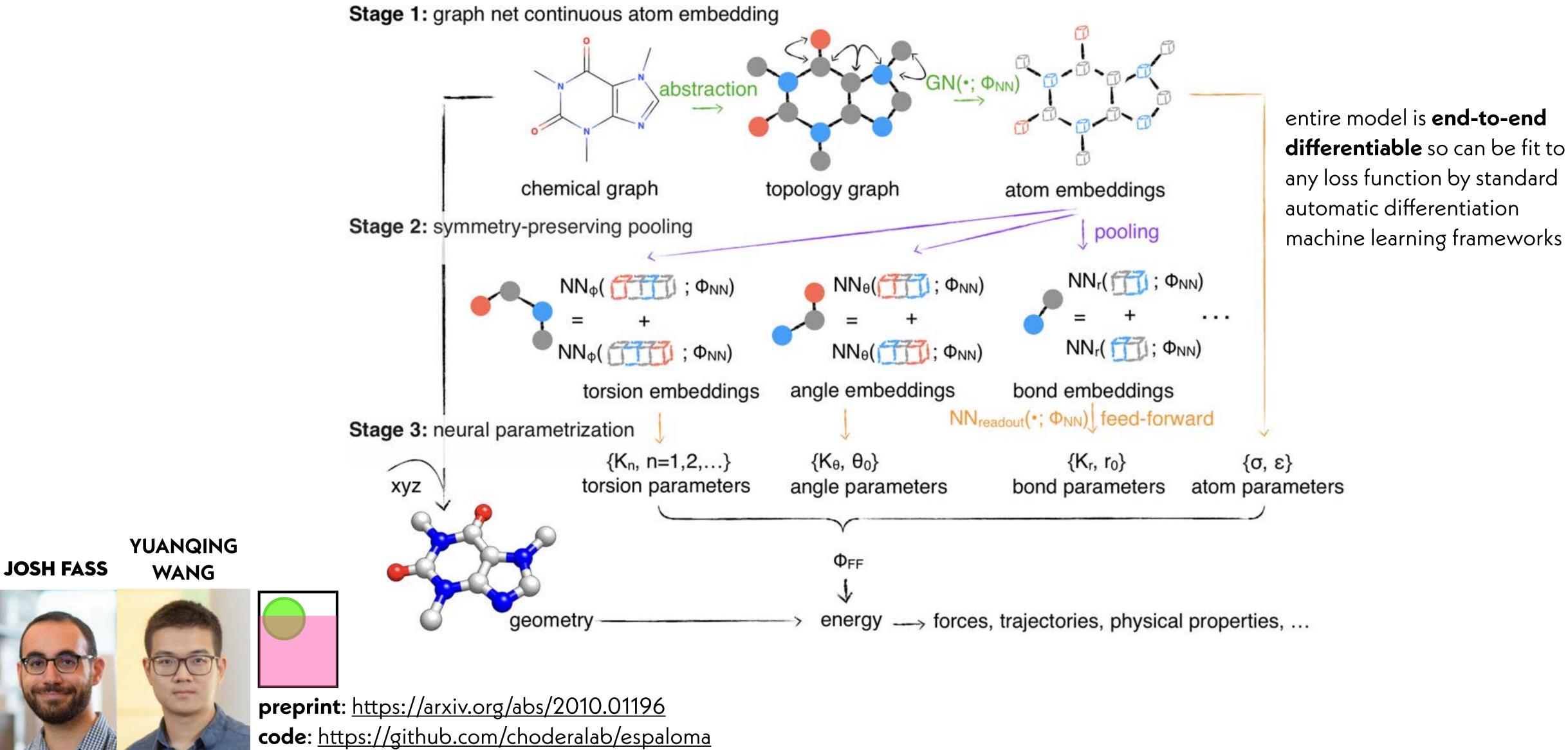
JOSH FASS

YUANQING

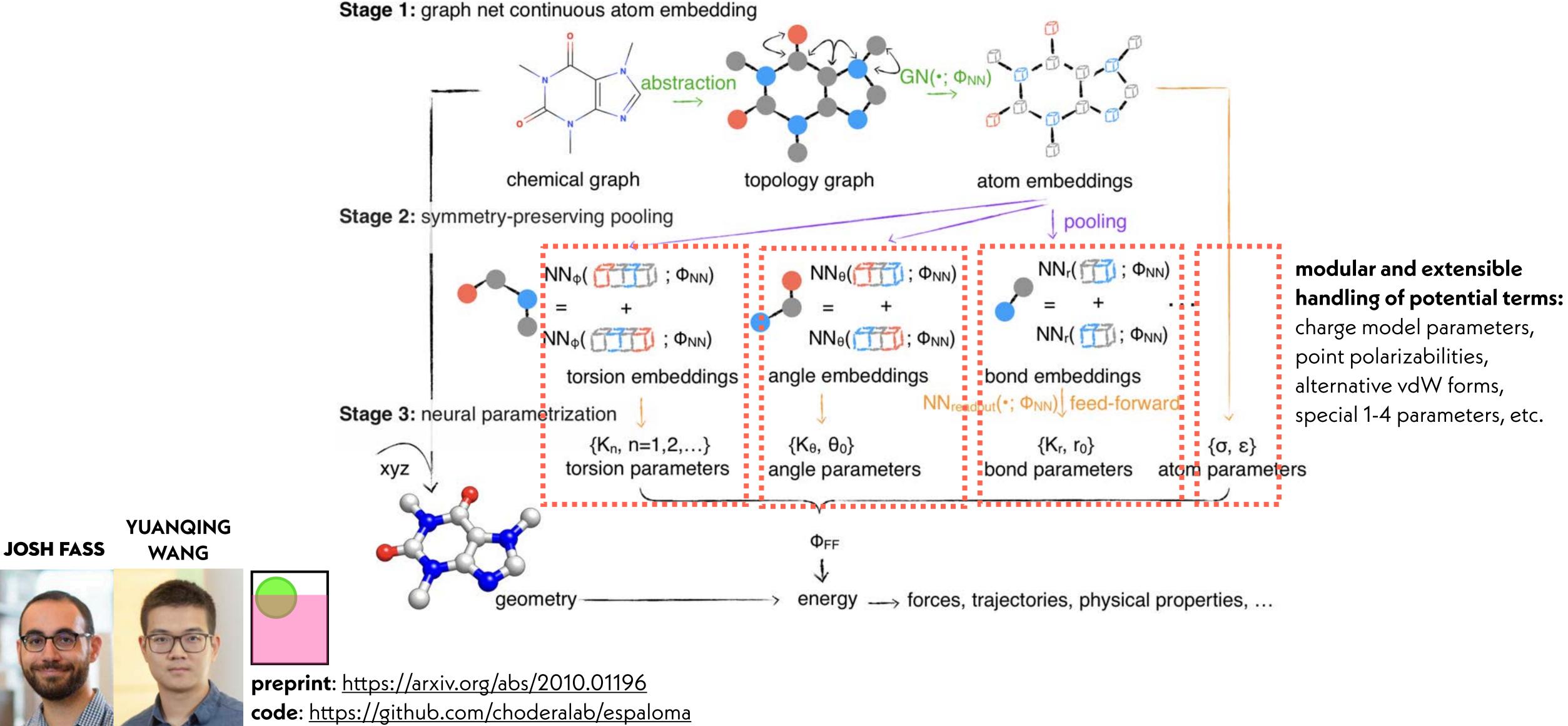
WANG

preprint: https://arxiv.org/abs/2010.01196 **code**: <u>https://github.com/choderalab/espaloma</u>

espaloma: extensible surrogate potential of ab initio learned and optimized by message-passing algorithm

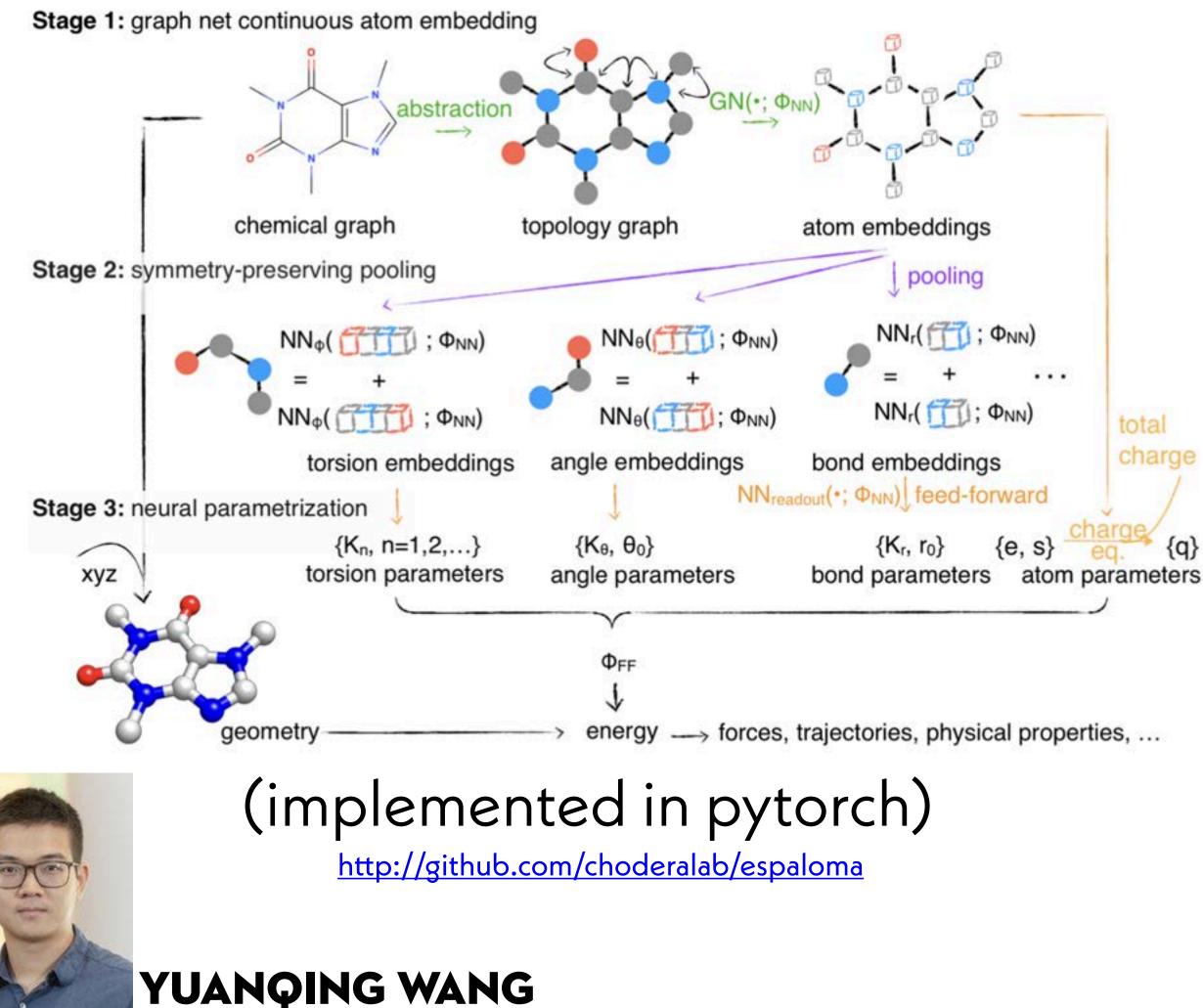


espaloma: extensible surrogate potential of ab initio learned and optimized by message-passing algorithm



ESPALOMA MAKES BUILDING A NEW FORCE FIELD EASY

espaloma architecture



building a new force field

import torch, dgl, espaloma as esp # retrieve OpenFF Gen2 Optimization Dataset dataset = esp.data.dataset.GraphDataset.load("gen2").view(batch_size=128) # define Espaloma stage I: graph -> atom latent representation representation = esp.nn.Sequential (layer=esp.nn.layers.dgl_legacy.gn("SAGEConv"), # use SAGEConv implementation in DGL config=[128, "relu", 128, "relu", 128, "relu"], # 3 layers, 128 units, ReLU activation # define Espaloma stage II and III: # atom latent representation -> bond, angle, and torsion representation and parameters readout = esp.nn.readout.janossy.JanossyPooling(in_features=128, config=[128, "relu", 128, "relu", 128, "relu"], # define modular MM parameters Espaloma will assign out_features={ 1: {"e": 1, "s": 1}, # atom hardness and electronegativity 2: {"coefficients": 2}, # bond linear combination 3: {"coefficients": 3}, # angle linear combination 4: {"k": 6}, # torsion barrier heights (can be positive or negative) 1, # compose all three Espaloma stages into an end-to-end model espaloma_model = torch.nn.Sequential(representation, readout, esp.mm.geometry.GeometryInGraph(), esp.mm.energy.EnergyInGraph(), esp.nn.readout.charge_equilibrium.ChargeEquilibrium(), # define training metric metrics = [esp.metrics.GraphMetric(base_metric=torch.nn.MSELoss(), # use mean-squared error loss # between predicted and QM energies between=['u', "u_ref"], level="g", # compare on graph level esp.metrics.GraphMetric(base_metric=torch.nn.MSELoss(), # use mean-squared error loss # between predicted and reference charges between=['q', "q_hat"], level="n1", # compare on node level # fit Espaloma model to training data results = esp.Train(ds_tr=dataset, net=espaloma_model, metrics=metrics, device=torch.device('cuda:0'), n_epochs=5000, optimizer=lambda net: torch.optim.Adam(net.parameters(), 1e-3), # use Adam optimizer).run()

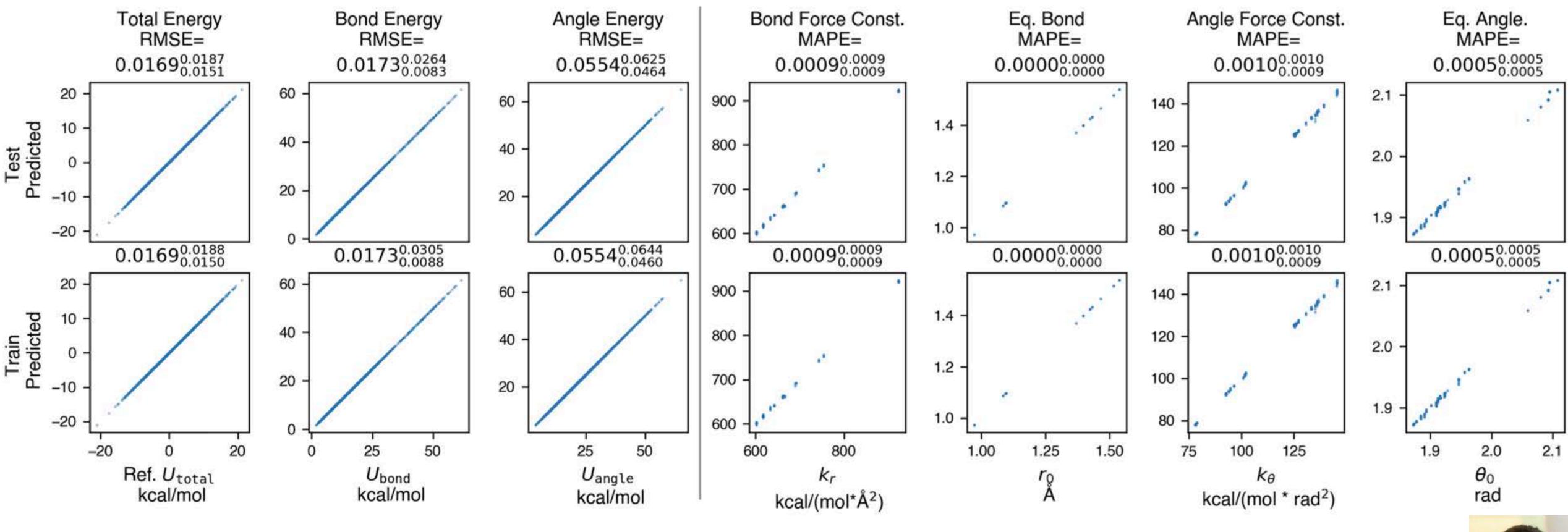
```
torch.save(espaloma_model, "espaloma_model.pt") # save model
```

Listing 1. Defining and training a modular Espaloma model.

```
total
charge
    {q}
```

ESPALOMA CAN LEARN TO REPRODUCE LEGACY MM FORCE FIELDS WITH LOW RMSE ERROR IN CONFORMATIONAL ENERGIES

conformer energies

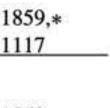


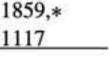
preprint: https://arxiv.org/abs/2010.01196 code: http://github.com/choderalab/espaloma reference force field: GAFF 1.81 [https://doi.org/10.1002/jcc.20035] dataset: PhAlkEthOH [https://dx.doi.org/10.1021/acs.jctc.8b00640]

force field parameters

2/	(a) datacat		# traic	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset		# mols	# trajs		Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)		7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)		792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476^{0.4690}_{0.4273}$	$0.4233_{0.4053}^{0.4414}$	8.0247 8.2456 7.8271	8.0077 ^{8.2313} 7.7647	9.4014 ^{9.6434} 9.2135		
12	PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	4.4446 ^{4.5738} 4.3386	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.111}^{3.185}$	
joint	OpenFF Gen2 Optimization	1528	11537	45902	$0.8264_{0.7682}^{0.9007}$	$1.8764_{1.7827}^{1.9947}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	-25.438255	
	PepConf	1520			$1.2038^{1.3056}_{1.1178}$	$1.7307_{1.6053}^{1.8439}$	3.6143 ^{3.7288} 3.4870	4.4446 ^{4.5738} 4.3386	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.111}^{3.185}$	
(1)											

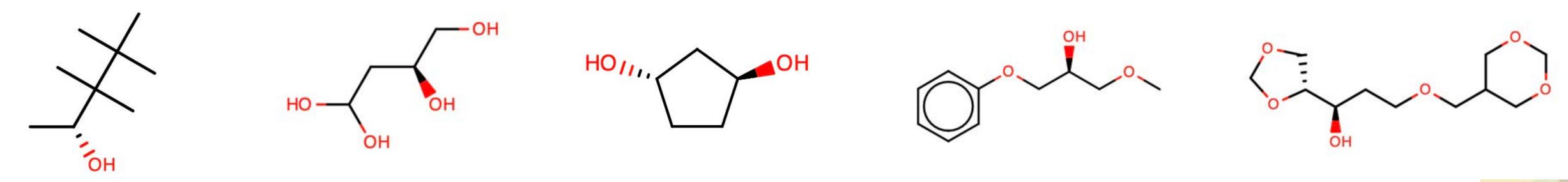
preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u>





2	(a) datacat	# mole	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
~	(a) dataset	# 11015			Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
2.8	PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
21											
81											

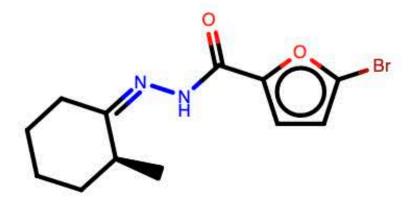
PhAlkEthOh: Phenyls, Alkanes, Ethers, and alcohols (OH) (a low-complexity chemical space)

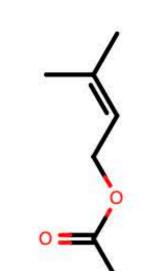


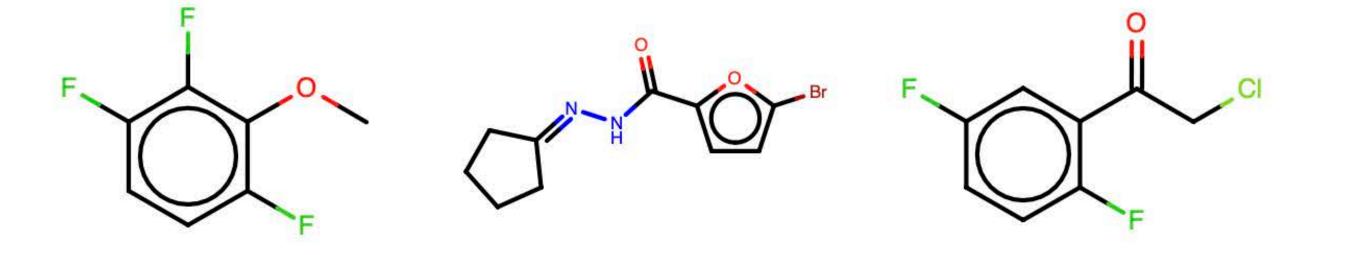
preprint: https://arxiv.org/abs/2010.01196 code: http://github.com/choderalab/espaloma

PhAlkEthOH doi: https://dx.doi.org/10.1021/acs.jctc.8b00640

(a) datacat	# mala	# trajs	# snanshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset	# 11015		# shapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	$1.1398^{1.2332}_{1.0715}$	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413^{0.7920}_{0.6914}$		$2.1768^{2.3388}_{2.0380}$		$2.5386^{2.6640}_{2.4370}$		





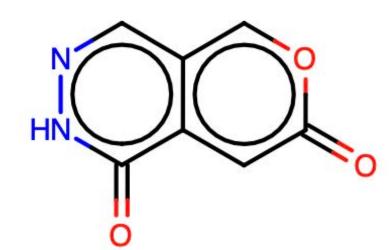


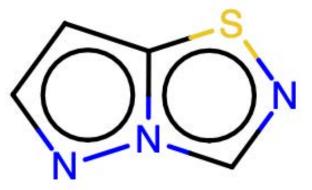
preprint: https://arxiv.org/abs/2010.01196 code: http://github.com/choderalab/espaloma

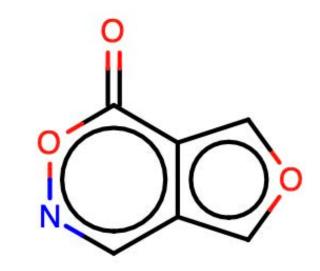
OpenFF Gen2 Optimization set: Diverse druglike fragments challenging for force fields (a moderate-complexity chemical space)

(a) datacat	# mole	# traic	# chanchotc	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset	# mols	# trajs	# snapshots	Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)	7408	12592	244036	0.8656 ^{0.9131} 0.8225	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233^{0.4414}_{0.4053}$	8.0247 8.2456 7.8271	8.0077 ^{8.2313} 7.7647	9.4014 ^{9.6434} 9.2135		
					0.30022.2002.2					

VEHICLe: Virtual exploratory heterocyclic drug scaffold library (aromatic bicyclic heterocyclic compounds containing C, N, O, S, H)

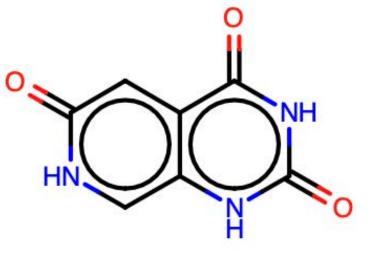


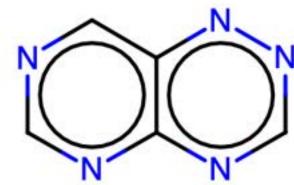




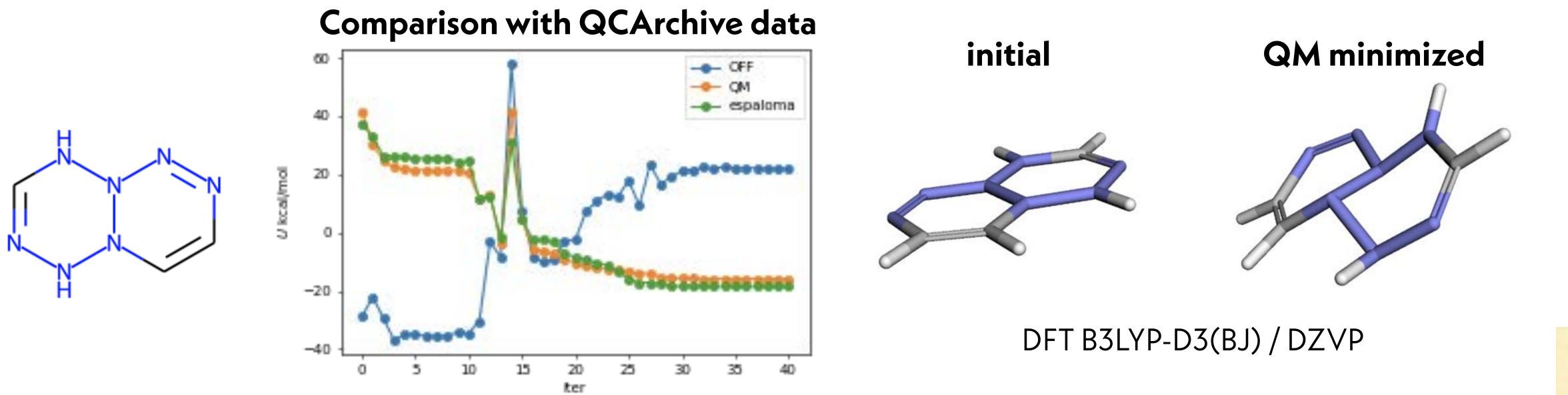
preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u>

VEHICLe doi: http://doi.org/10.1021/jm801513z





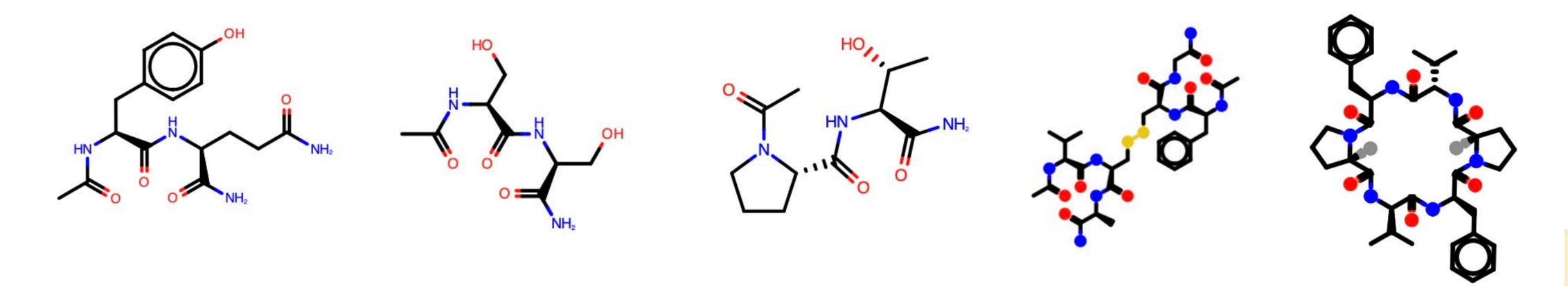
(a) datacat	# mols	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset				Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)	7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071_{1.5197}^{1.6915}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	8.0247 8.2456 7.8271	8.0077 ^{8.2313} 7.7647	9.4014 ^{9.6434} 9.2135		



preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u>

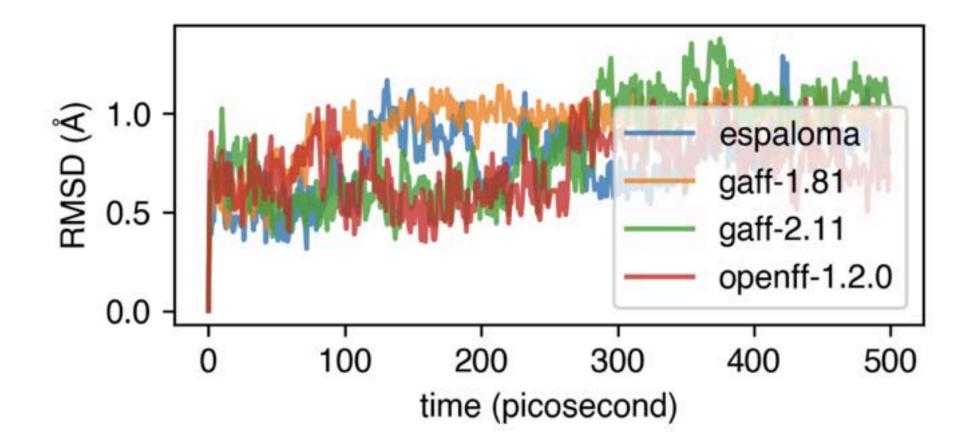
(a) datacat	# mole	# trajs	# snapshots	Espaloma RMSE		Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset	# mols	# trajs		Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)	7408	12592	244036	0.8656 ^{0.9131} 0.8225	1.1398 ^{1.2332} 1.0715	$1.6071^{1.6915}_{1.5197}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)	792	3977	23748	$0.7413_{0.6914}^{0.7920}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	2.5386 ^{2.6640} 2.4370		
VEHICLe (heterocyclic)	24867	24867	234326	$0.4476_{0.4273}^{0.4690}$	$0.4233_{0.4053}^{0.4414}$	8.0247 8.2456 7.8271	8.0077 ^{8.2313} 7.7647	9.4014 ^{9.6434} 9.2135		
PepConf (peptides)	736	7560	22154	$1.2714_{1.1899}^{1.3616}$	$1.8727_{1.7309}^{1.9749}$	3.6143 ^{3.7288} 3.4870	4.4446 ^{4.5738} 4.3386	$4.3356_{4.1965}^{4.4641}$	3.1502 ^{3.185} _{3.111}	

PepConf: Short peptides, including disulfides and cyclic peptides



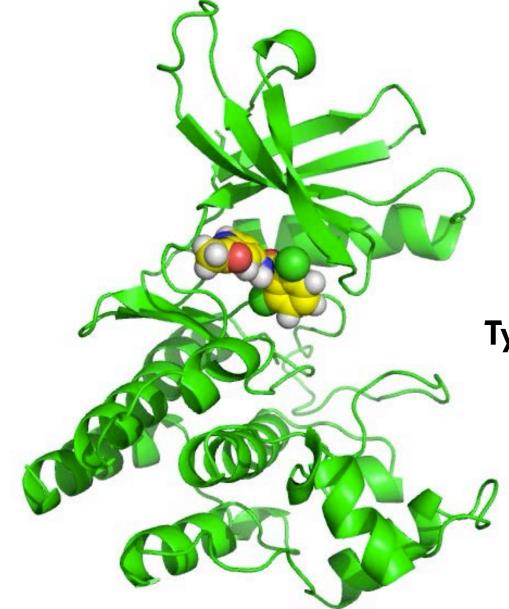
preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u>

»,	(a) datacat		# traic	# snapshots	Espalon	na RMSE	Legacy FF RMSE (kcal/mol) (Test molecules)				
(a) dataset		# mols	# trajs		Train	Test	OpenFF 1.2.0	GAFF-1.81	GAFF-2.11	Amber ff1	
PhAlkEthOH (simple CHO)		7408	12592	244036	$0.8656_{0.8225}^{0.9131}$	1.1398 ^{1.2332} 1.0715	$1.6071^{1.6915}_{1.5197}$	$1.7267^{1.7935}_{1.6543}$	$1.7406^{1.8148}_{1.6679}$		
OpenFF Gen2 Optimization (druglike)		792	3977	23748	$0.7413^{0.7920}_{0.6914}$	$0.7600_{0.6644}^{0.8805}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$		
14 Sec."	VEHICLe (heterocyclic)	24867	24867	234326	$0.4476^{0.4690}_{0.4273}$	$0.4233_{0.4053}^{0.4414}$	8.0247 8.2456 7.8271	8.0077 ^{8.2313} 7.7647	9.4014 ^{9.6434} 9.2135		
172	PepConf (peptides)	736	7560	22154	$1.2714^{1.3616}_{1.1899}$	$1.8727_{1.7309}^{1.9749}$	$3.6143_{3.4870}^{3.7288}$	4.4446 ^{4.5738} 4.3386	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.11}^{3.183}$	
joint	OpenFF Gen2 Optimization	1528	11537	45902	$0.8264^{0.9007}_{0.7682}$	$1.8764_{1.7827}^{1.9947}$	$2.1768_{2.0380}^{2.3388}$	$2.4274_{2.3300}^{2.5207}$	$2.5386_{2.4370}^{2.6640}$	-22.000	
Joint	PepConf	1520	11557	43902	$1.2038^{1.3056}_{1.1178}$	$1.7307_{1.6053}^{1.8439}$	$3.6143_{3.4870}^{3.7288}$	4.4446 ^{4.5738} 4.3386	$4.3356_{4.1965}^{4.4641}$	$3.1502_{3.11}^{3.18}$	
- A.											



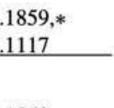
preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u>

Tyk2 benchmark doi: https://doi.org/10.1021/ja512751q



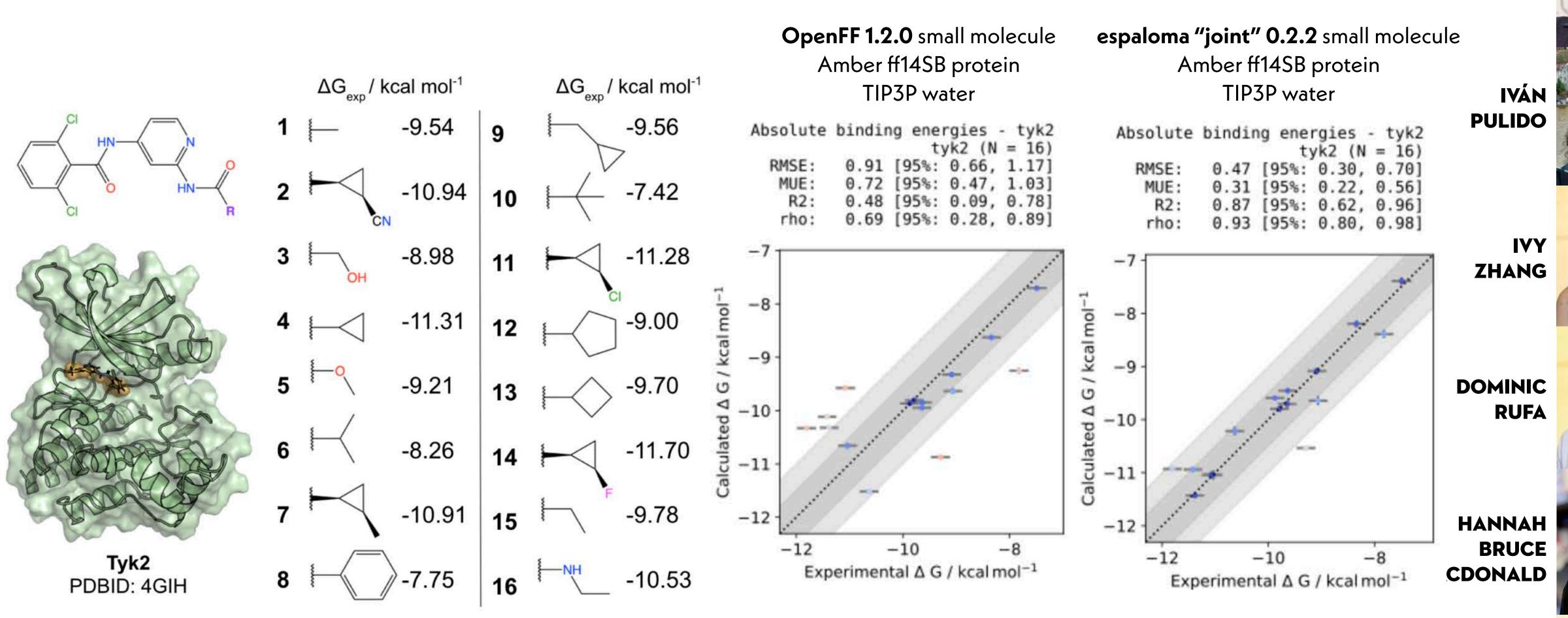
Tyk2 from OpenFF benchmark set

espaloma joint model + TIP3P water





ESPALOMA SMALL MOLECULE PARAMETERS PERFORM AS WELL OR **BETTER THAN MODERN BIOMOLECULAR FORCE FIELDS**

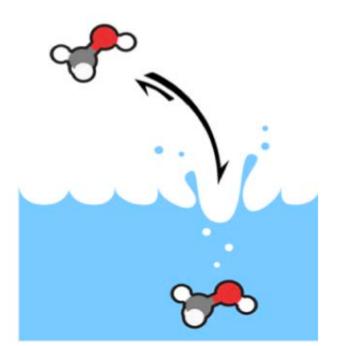


preprint: https://arxiv.org/abs/2010.01196 code: <u>http://github.com/choderalab/espaloma</u> <u>free energy calculations with http://github.com/choderalab/perses</u>

MIKE **HENRY**

YUANQING WANG

ESPALOMA CAN ALSO FIT EXPERIMENTAL FREE ENERGIES



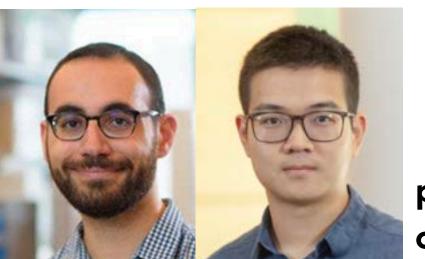
experimental hydration free energies from **FreeSolv** <u>https://github.com/MobleyLab/FreeSolv</u>

loss function:

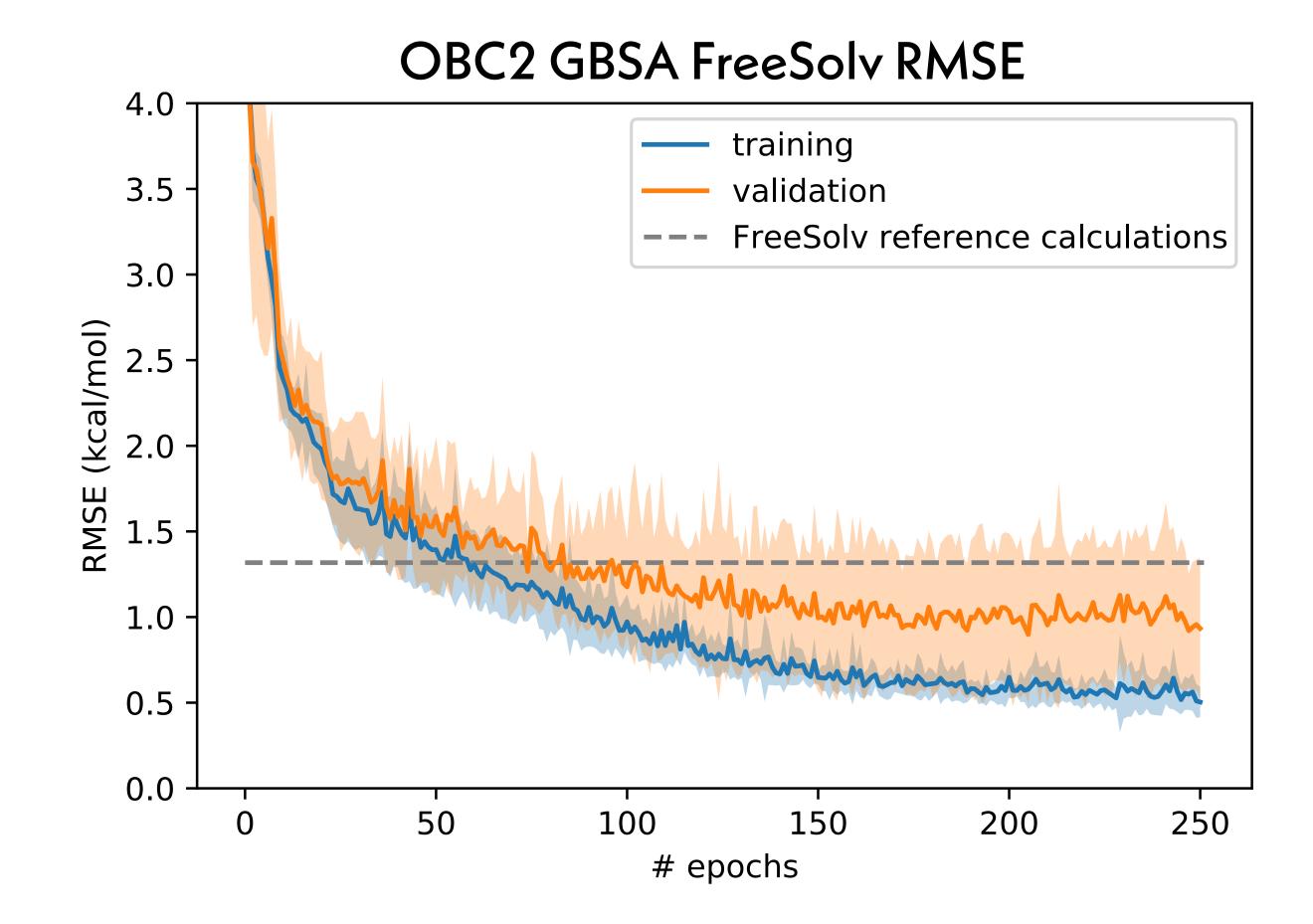
$$L(\Phi_{NN}) = \sum_{n=1}^{N} \frac{\left[\Delta G_n(\Phi_{NN}) - \Delta G_n^{\exp}\right]^2}{\sigma_n^2}$$

Here, ΔG estimated via one-step free energy perturbation, but can easily differentiate properties through MBAR

YUANQING JOSH FASS WANG



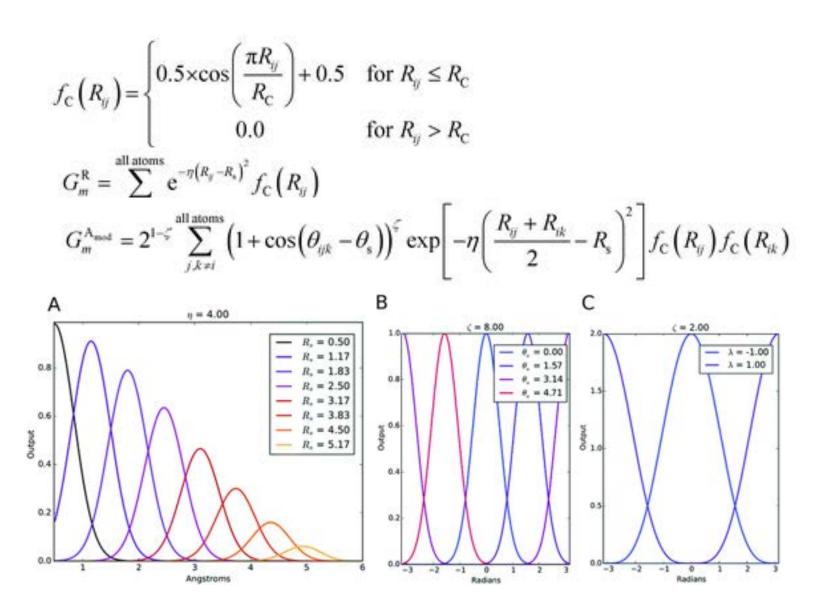
preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma

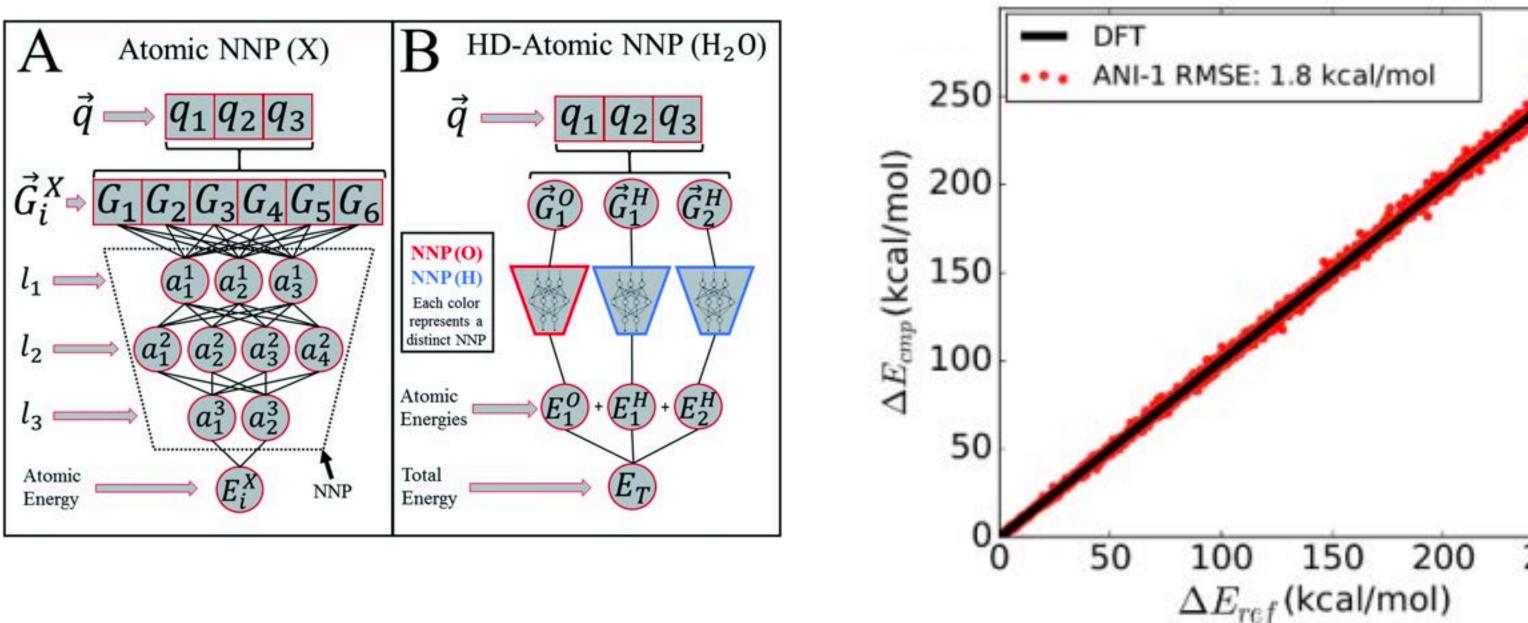


A NEW GENERATION OF QUANTUM MACHINE LEARNING (QML) POTENTIALS PROVIDE SIGNIFICANTLY MORE FLEXIBILITY IN FUNCTIONAL FORM, THOUGH AT MUCH GREATER COST

ANI family of quantum machine learning (QML) potentials

radial and angular features

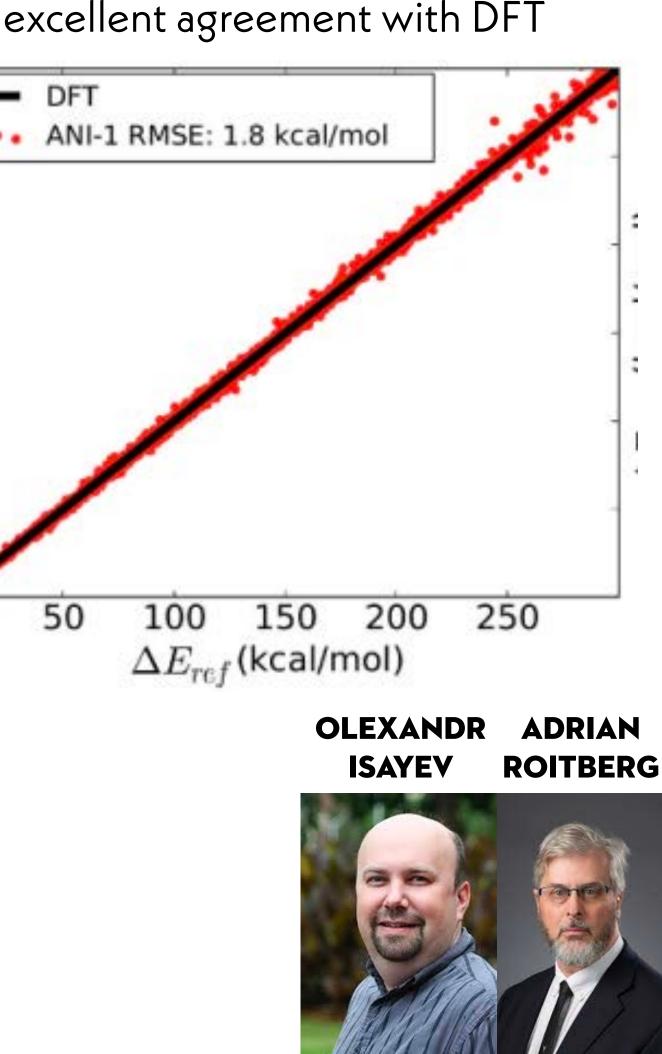




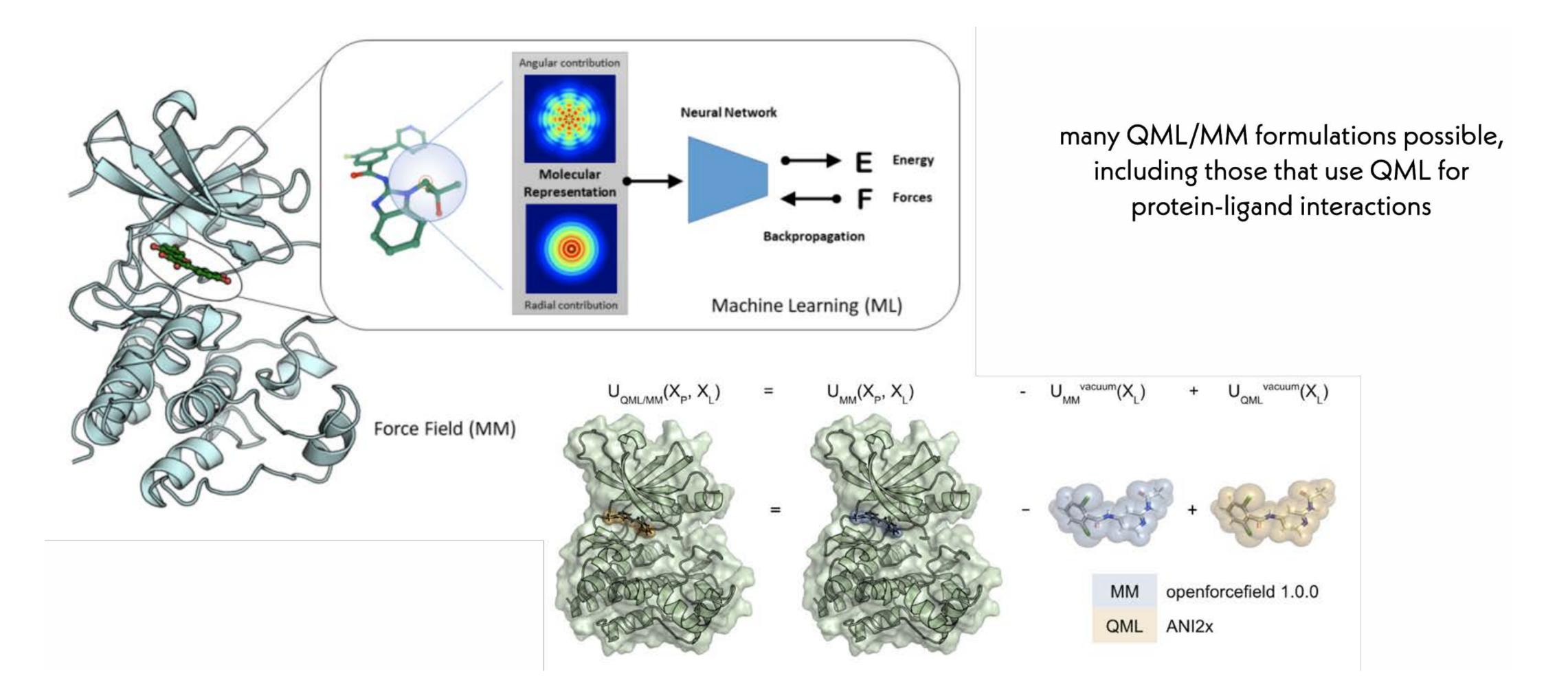
Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. http://doi.org/10.1039/c6sc05720a

deep neural network for each atom

ISAYEV

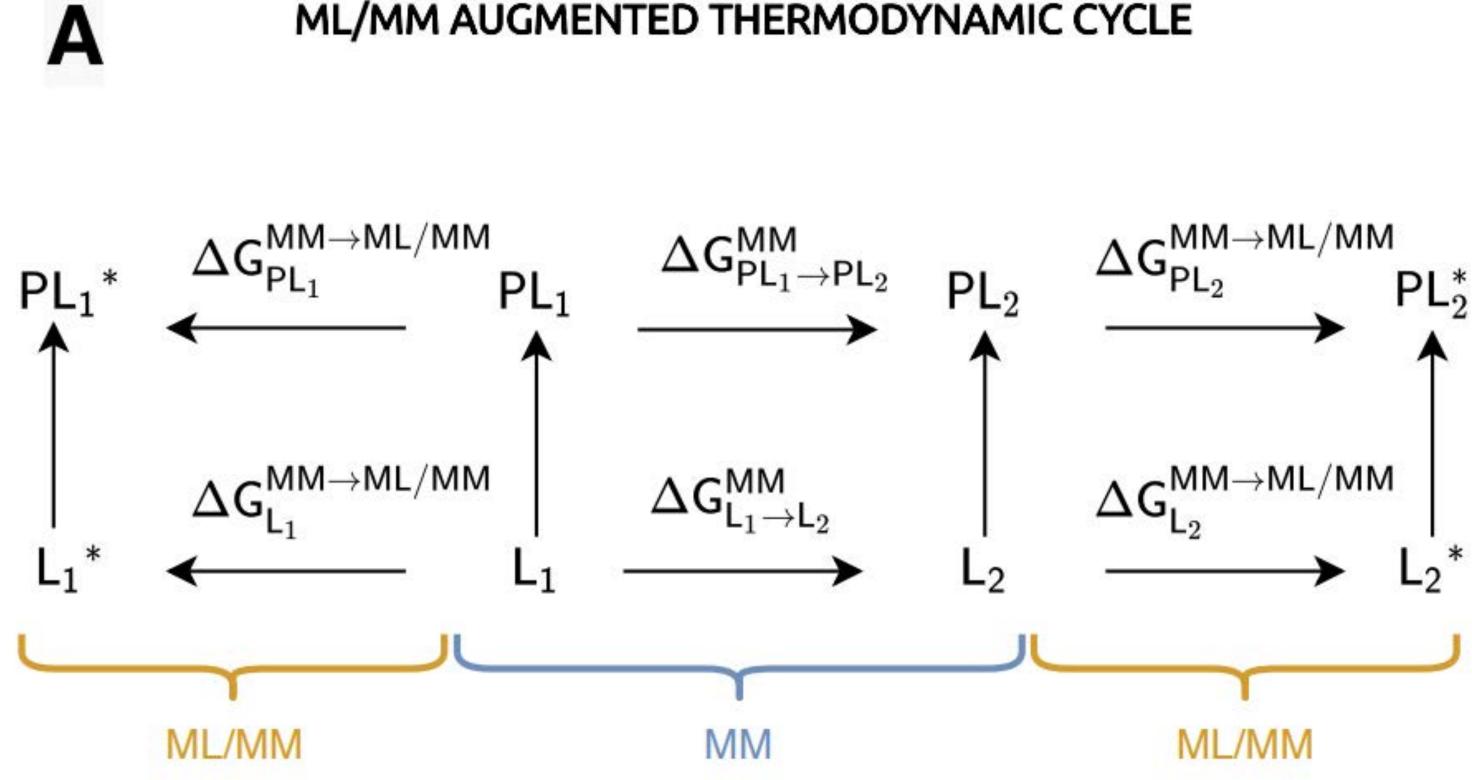


HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF



Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera. preprint: <u>https://doi.org/10.1101/2020.07.29.227959</u> **code:** <u>https://github.com/choderalab/qmlify</u>

HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF

MM (OPLS2.1 + CM1A-BCC charges) Missing torsions from LMP2/cc-pVTZ(-f) QM calculations SPC water

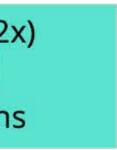
							-	Tyk2
		ΔG _{exp} /k	cal mol-1		ΔG _{exp} /k	cal mol-1	no. of compds	16
	1	┣—	-9.54	9	F, .	-9.56	binding affinity range (kcal/mol)	4.3
		1		500K	∇		crystal structure	4GIH
	2		-10.94	10	\vdash -	-7.42	series ref	52,53
-	3		-8.98		٤ /	-11.28	no. of perturbations	24
A GSZ	3	ОН	-0.90	11		-11.20	MUE FEP	0.75 ± 0.11
Stores	4	\vdash	-11.31	12		-9.00	RMSE FEP	0.93 ± 0.12
Altra					F			
	5	<u> </u>	-9.21	13	\mapsto	-9.70		
and the second	~	\vdash	0.00	535453		11 70		
A CONTRACT	6	. /	-8.26	14	\vdash	-11.70		
BUD B	7	$\vdash \!$	-10.91	15	F.	-9.78		
Tyk2 PDBID: 4GIH	8	\vdash	∂-7.7 5	16	H -	-10.53		

Free energies are in units of kilocalories per mole.

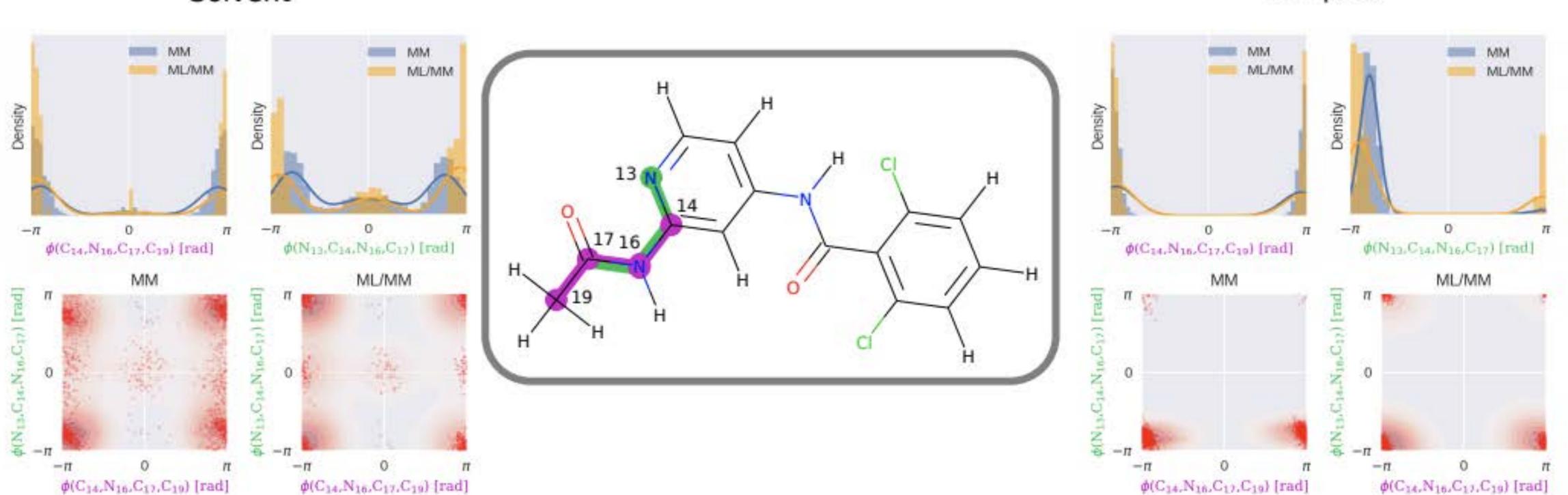
Tyk2 benchmark system from Wang et al. JACS 137:2695, 2015 replica-exchange free energy calculations with solute tempering (FEP/REST) **MM** (OpenFF 1.0.0 "Parsley") AMBER14SB protein force field TIP3P; Joung and Cheatham ions **QML/MM** (OpenFF 1.0.0 + ANI2x) AMBER14SB protein force field TIP3P; Joung and Cheatham ions



replica-exchange free energy calculations with perses preprint: https://doi.org/10.1101/2020.07.29.227959 **code**: <u>https://github.com/choderalab/perses</u> https://github.com/choderalab/qmlify



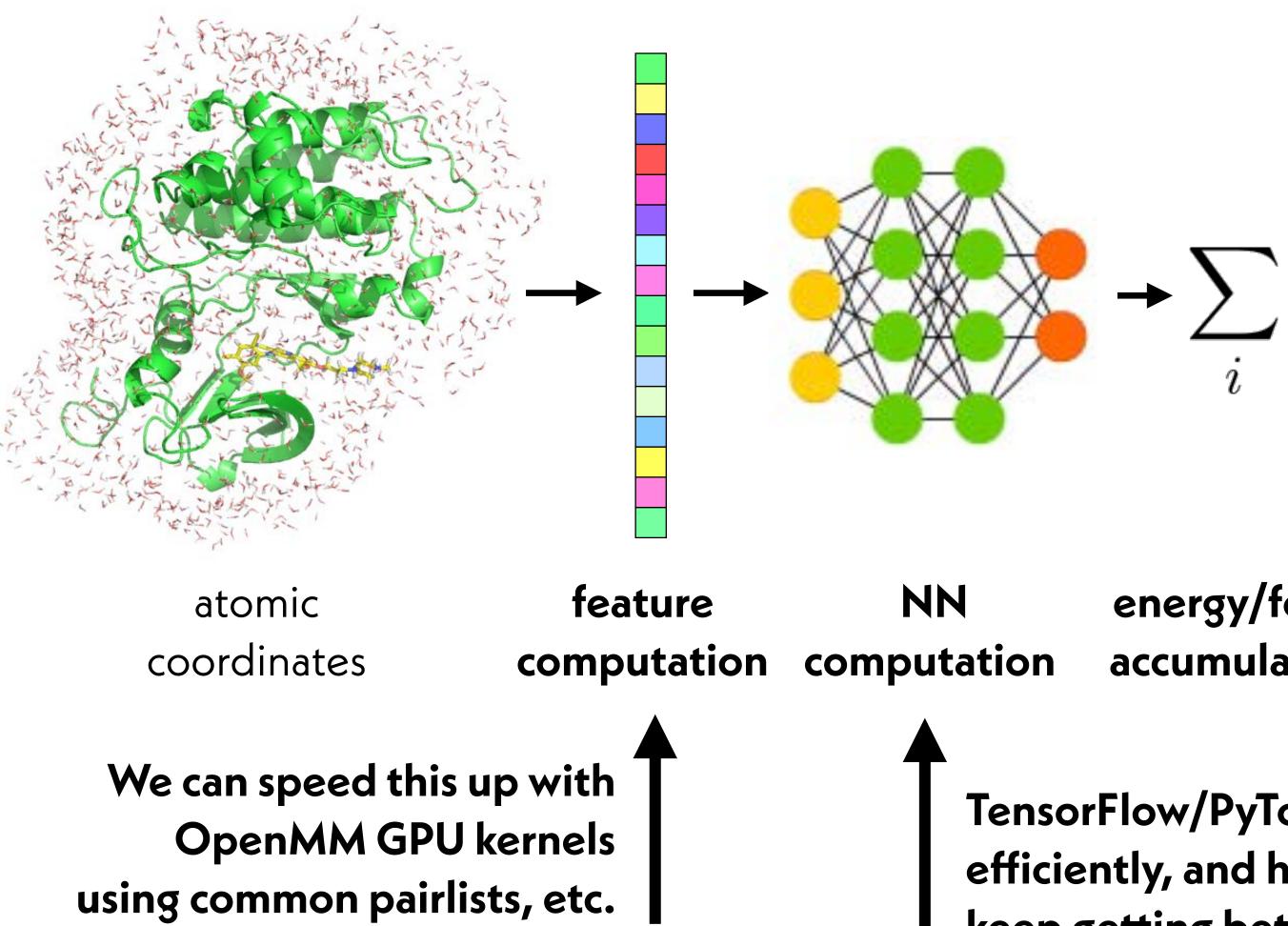
HYBRID QUANTUM MACHINE LEARNING / MOLECULAR MECHANICS (QML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



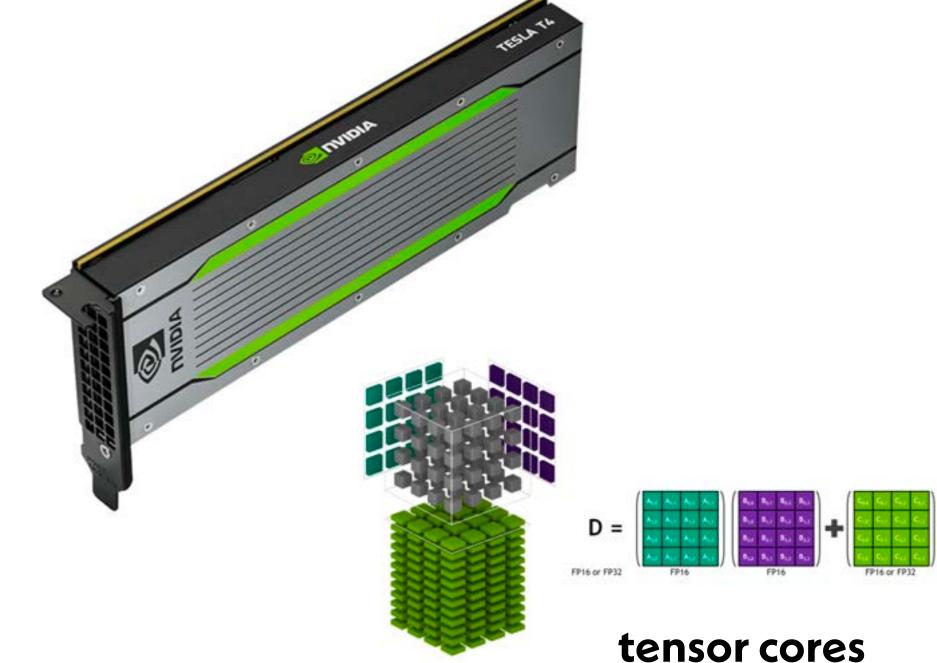
Solvent

Complex

COMPUTATIONAL BOTTLENECKS IN CURRENT QML MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS



(e.g. for ANI models)



energy/force accumulation

TensorFlow/PyTorch do this efficiently, and hardware will keep getting better for this step

COMPUTATIONAL BOTTLENECKS IN CURRENT QML MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS

PDB ID	# res	# heavy atoms	OpenMM ns/day (4 fs timestep)	TorchANI QML/MM ns/day (2 fs timestep)	OpenMM QML/MM* ns/day (2 fs timestep)
3BE9	328	48	436	10.4	96.5 / 50.8
2P95	286	50	430	7.93	96.8 / 49.8
1HPO	198	64	547	9.12	101 / 44.6
1AJV	198	75	666	9.19	101 / 40.7
				* ANI e	nsemble size: 1/8

paper: https://arxiv.org/abs/2201.08110 **code:** <u>https://github.com/openmm/nnpops</u> **NNPOps** library

https://github.com/openmm/nnpops

- * CUDA/CPU accelerated kernels
- * API for inclusion in MD engines
- * Ops wrappers for ML frameworks (PyTorch, TensorFlow, JAX)
- * Community-driven, package agnostic

(~2.5x slower than GPU MD right now, but need 2x smaller timestep) model distillation will become important in building single models that are efficient on hardware

WE WANT TO MAKE IT EASY TO RUN QML/MM SIMULATIONS WITH OPENMM

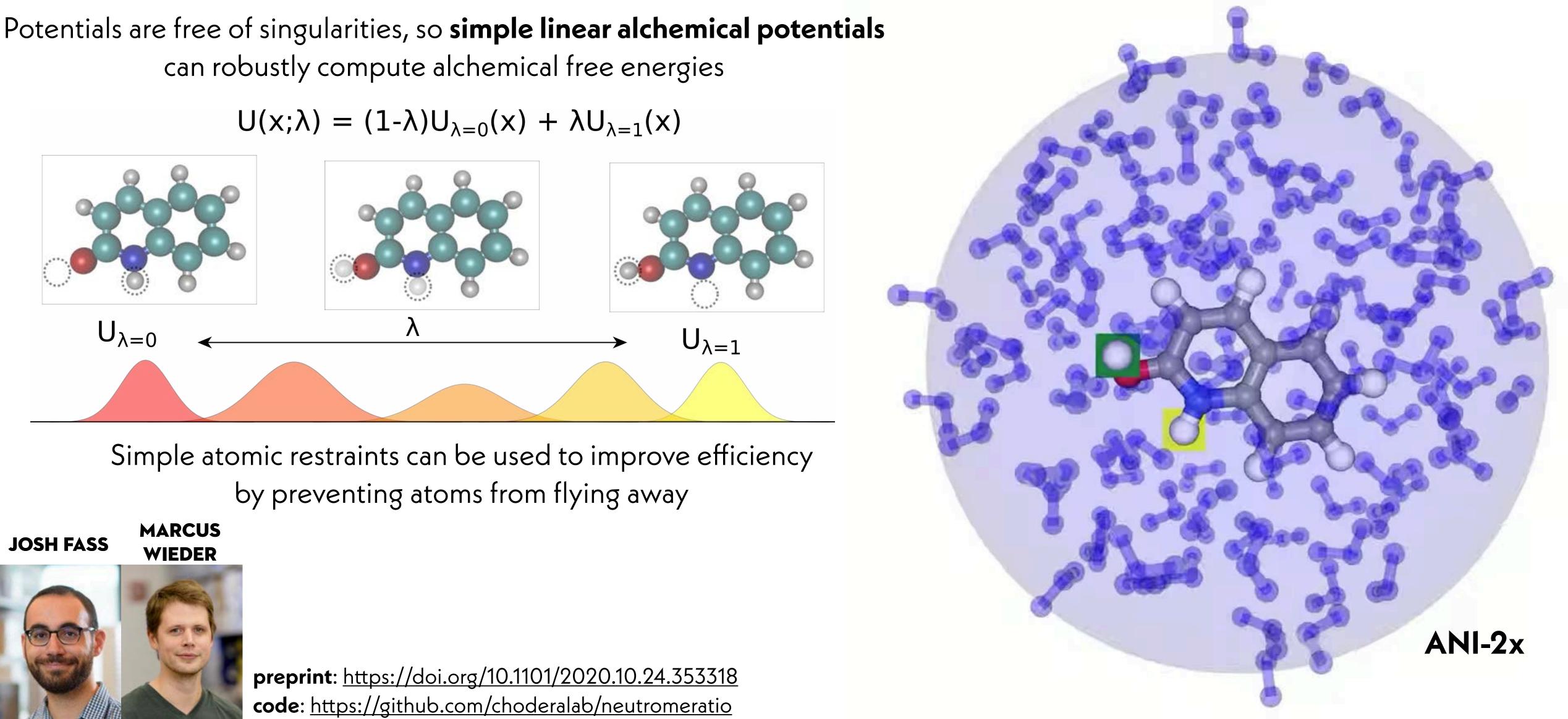
Use Amber 14SB and TIP3P-FB for the protein and solvent forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml') # Use OpenFF for the ligand from openmmforcefields.generators import SMIRNOFFTemplateGenerator smirnoff = SMIRNOFFTemplateGenerator(molecules=molecules) # Create an OpenMM MM system mm_system = forcefield.createSystem(topology) # Replace ligand intramolecular energetics with ANI-2x potential = MLPotential('ani2x') ml_system = potential.createMixedSystem(topology, mm_system, ligand_atoms)

https://github.com/openmm/openmm-ml

PURE QUANTUM MACHINE LEARNING (QML) POTENTIALS CAN BE USED TO COMPUTE FREE ENERGY DIFFERENCES BETWEEN CHEMICAL SPECIES

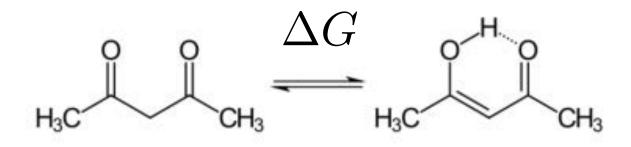
can robustly compute alchemical free energies

 $U(x;\lambda) = (1-\lambda)U_{\lambda=0}(x) + \lambda U_{\lambda=1}(x)$

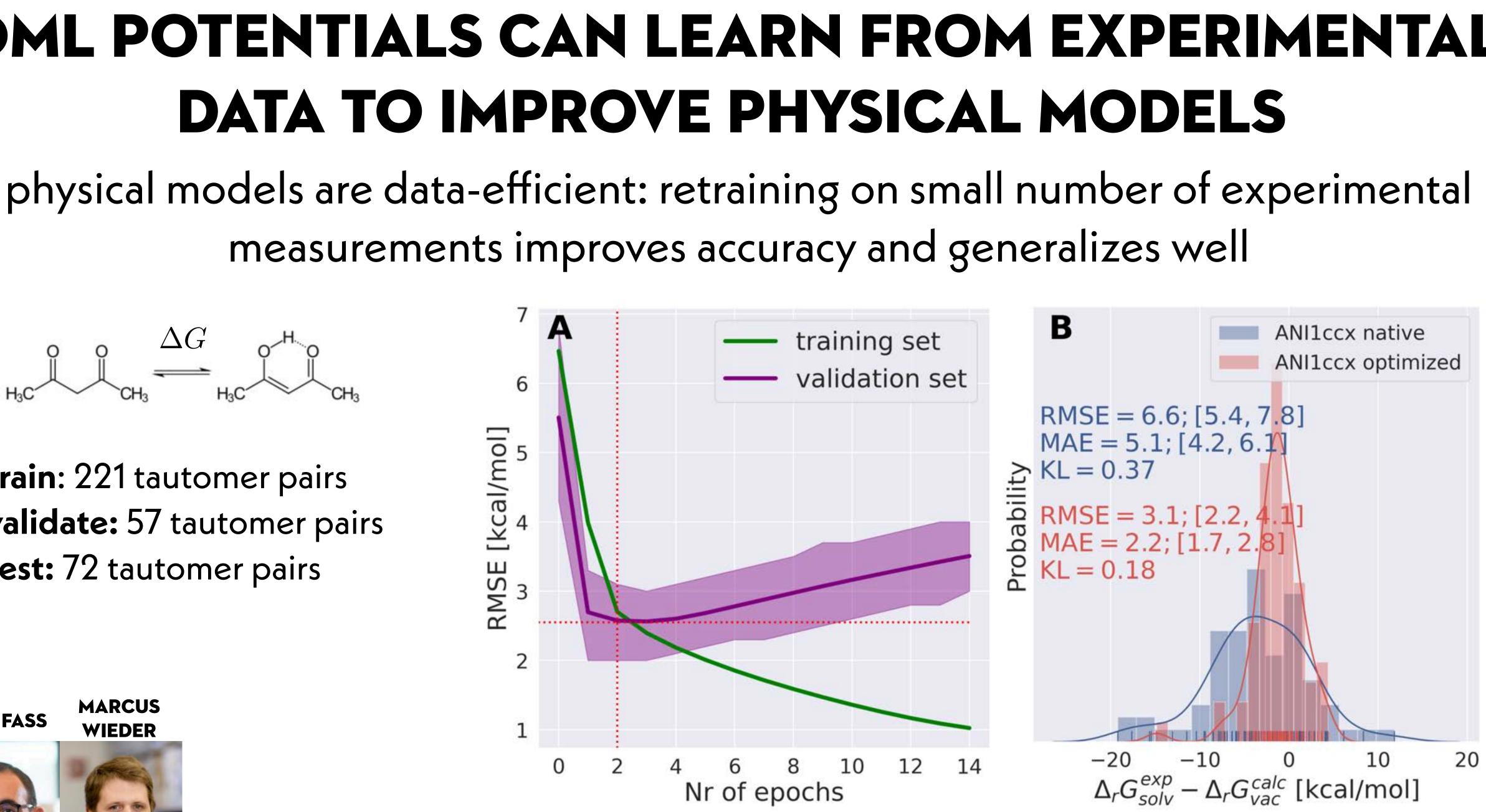


JOSH FASS

QML POTENTIALS CAN LEARN FROM EXPERIMENTAL DATA TO IMPROVE PHYSICAL MODELS



train: 221 tautomer pairs validate: 57 tautomer pairs test: 72 tautomer pairs



JOSH FASS WIEDER

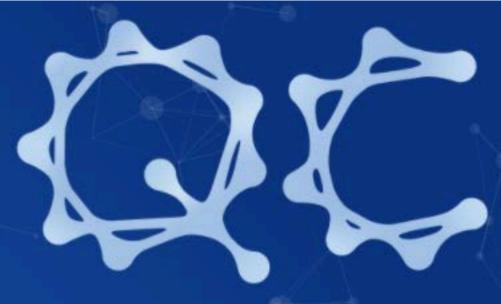
MARCUS

preprint: <u>https://doi.org/10.1101/2020.10.24.353318</u> **code**: <u>https://github.com/choderalab/neutromeratio</u>

The MolSSI **Quantum Chemistry** Archive

A central source to compile, aggregate, query, and share quantum chemistry data.

GET STARTED!



QCArchive

A MolSSI Project

FAIR Data

MolSSI hosts the QCArchive server, the Not only for computing and storing largest publicly available collection of quantum chemistry data. So far, it stores over ten million computations for the molecular sciences community.

Interactive Visualization

quantum chemistry computations at scale, but also for visualizing and understanding results as well.

Private Instances

The infrastructure behind QCArchive is fully open-souce. Spin up your own instance to compute private data and share only with collaborators.

80,612,248 MOLECULES

86,013,142 RESULTS

166

http://qcarchive.molssi.org

OpenMM and the Open Force Field Initiative are working closely with MoISSI to expand the QCArchive to support the construction of next-generation machine learning force fields

SPICE DES Monomers Single Points Dataset v1.1	2021-11-15-QMDataset- DES-monomers-single- points	Single point energy calculation of DES monomers.	I, C, Br, P, CI, H, S, O, F, N
SPICE Solvated Amino Acids Single Points Dataset v1.1	2021-11-08-QMDataset- Solvated-Amino-Acids- single-points	Single point energy calculation of solvated amino acids.	N, S, O, C, H
SPICE DES370K Single Points Dataset v1.0	2021-11-08-QMDataset- DES370K-single-points	SPICE single point dataset for ML applications.	'N', 'O', 'Mg', 'H', 'F', 'K', 'Br', 'Na', 'P', 'Cl', 'l', 'Ca', 'S', 'Li', 'C'
SPICE DES370K Single Points Dataset Supplement v1.0	2022-02-18-QMDataset- DES370K-single-points- supplement	SPICE single point dataset for ML applications.	F, H, Cl, S, I, Br, N, Li, O, C, Na
SPICE Dipeptides Single Points Dataset v1.2	2021-11-08-QMDataset- Dipeptide-single-points	SPICE single point dataset for ML applications.	C ,N ,O ,H ,S
SPICE PubChem Set 1 Single Points Dataset v1.2	2021-11-08-QMDataset- pubchem-set1-single-points	SPICE single point dataset for ML applications.	'O', 'Cl', 'N', 'C', 'P', 'Br', 'S', 'F', 'I', 'H'
SPICE PubChem Set 2 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set2-single-points	SPICE single point dataset for ML applications.	'H', 'P', 'C', 'Cl', 'Br', 'N', 'F', 'S', 'O', 'l'
SPICE PubChem Set 3 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set3-single-points	SPICE single point dataset for ML applications.	'N', 'C', 'S', 'Cl', 'Br', 'F', 'P', 'I', 'H', 'O'
SPICE PubChem Set 4 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set4-single-points	SPICE single point dataset for ML applications.	'N', 'S', 'Br', 'O', 'C', 'F', 'H', 'I', 'CI', 'P'
SPICE PubChem Set 5 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set5-single-points	SPICE single point dataset for ML applications.	'F', 'H', 'S', 'Br', 'Cl', 'N', 'P', 'C', 'I', 'O'
SPICE PubChem Set 6 Single Points Dataset v1.2	2021-11-09-QMDataset- pubchem-set6-single-points	SPICE single point dataset for ML applications.	'Cl', 'O', 'N', 'H', 'C', 'P', 'S', 'F', 'Br', 'l'

https://github.com/openmm/spice-dataset

CAN WE CHANGE PRACTICE IN STRUCTURE-ENABLED DRUG **DISCOVERY BY LEVERAGING DATA WE GENERATE?**

week 1

MON	TUE	WED	тни	FRI	SAT	SUN	MON	TUE	WED	тни	FRI	SAT	SUN
designs/ predictions	synthesis			new data			designs/ predictions	synthesis			new data		

using published force field model

week 1

2021

MON	TUE	WED	тни	FRI	SAT	SUN	MON	TUE	WED	тни	FRI	SAT	SUN
designs/ predictions 1.0	synthesis			new data	build me	odel 2.0!	designs/ predictions 2.0	synthesis					

using force field model built from public + private data

week 2

using the same published force field model! we haven't learned anything from the data

week 2

using new model tuned to target from first week's data

PREPRINTS AND CODE

gimlet: graph convolutional networks for partial charge assignment preprint: https://arxiv.org/abs/1909.07903 **code**: <u>http://github.com/choderalab/gimlet</u>

espaloma: end-to-end differentiable assignment of force field parameters preprint: https://arxiv.org/abs/2010.01196 code: <u>https://github.com/choderalab/espaloma</u>

<u>amlify</u>: hybrid QML/MM alchemical free energy calculations for protein-ligand binding preprint: https://doi.org/10.1101/2020.07.29.227959 **code:** <u>https://github.com/choderalab/qmlify</u>

preprint: https://doi.org/10.1101/2020.10.24.353318 **code:** <u>https://github.com/choderalab/neutromeratio</u>

- neutromeratio: alchemical free energy calculations with fully QML potentials for tautomer ratio prediction

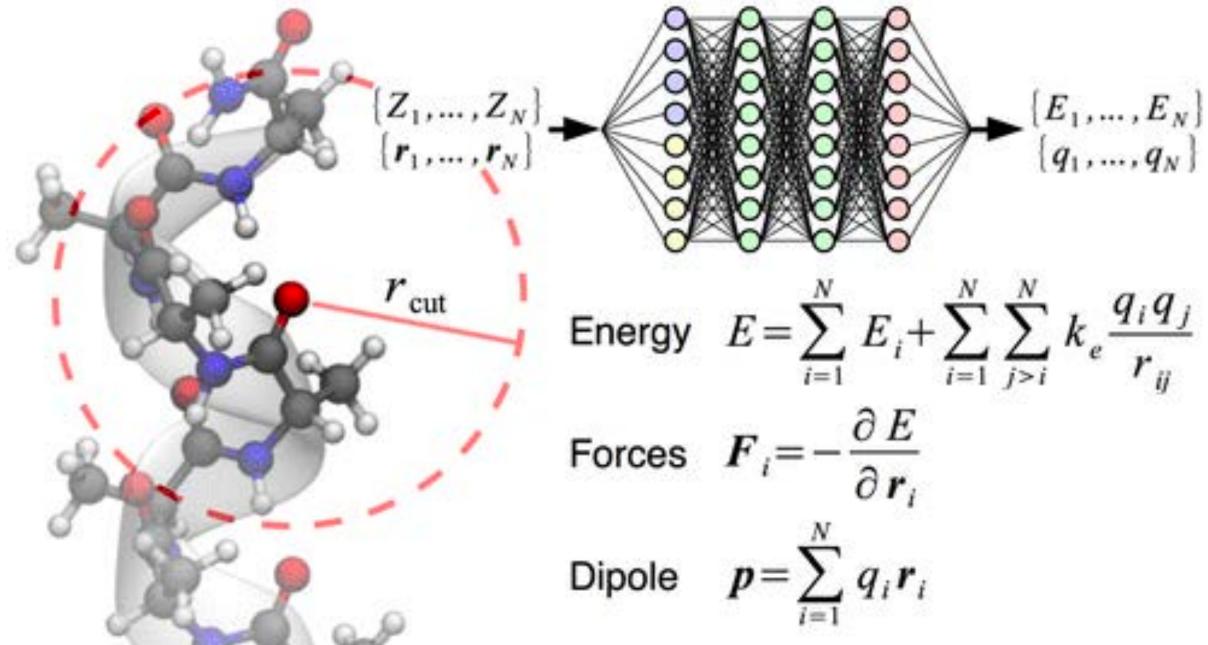
National Institutes STIFTUNG (CHARITÉ SCHRÖDINGER. of Health

T/2 Gerstner FAMILY FOUNDATION

Scientific Advisor: OpenEye, Foresite Labs All funding: <u>http://choderalab.org/funding</u>

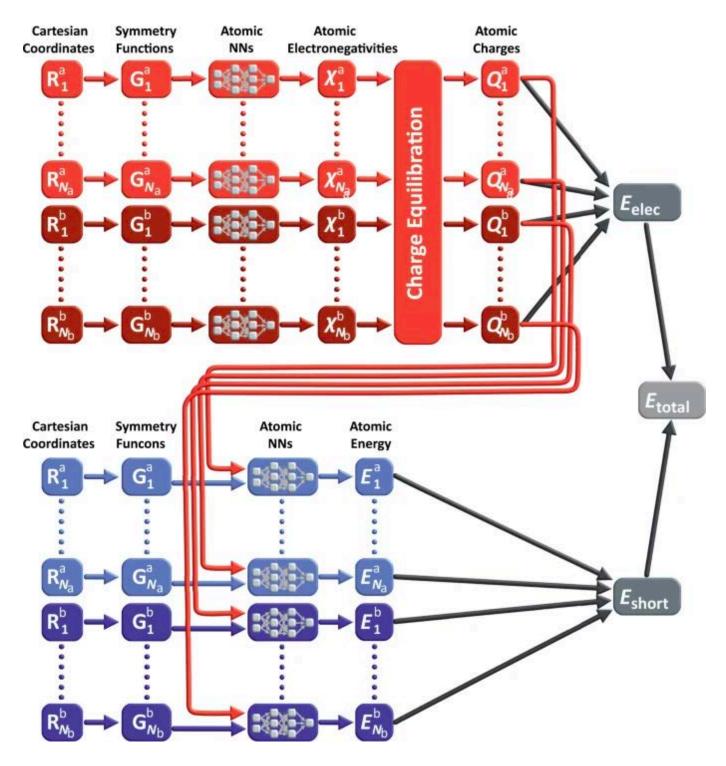
HODERA LAB

MM WILL MOVE TOWARD POTENTIALS THAT BLEND **SHORT-RANGE ML AND LONG-RANGE PHYSICS 4D-HGNNP PhysNet**



Unke and Meuwly https://doi.org/10.1021/acs.jctc.9b00181

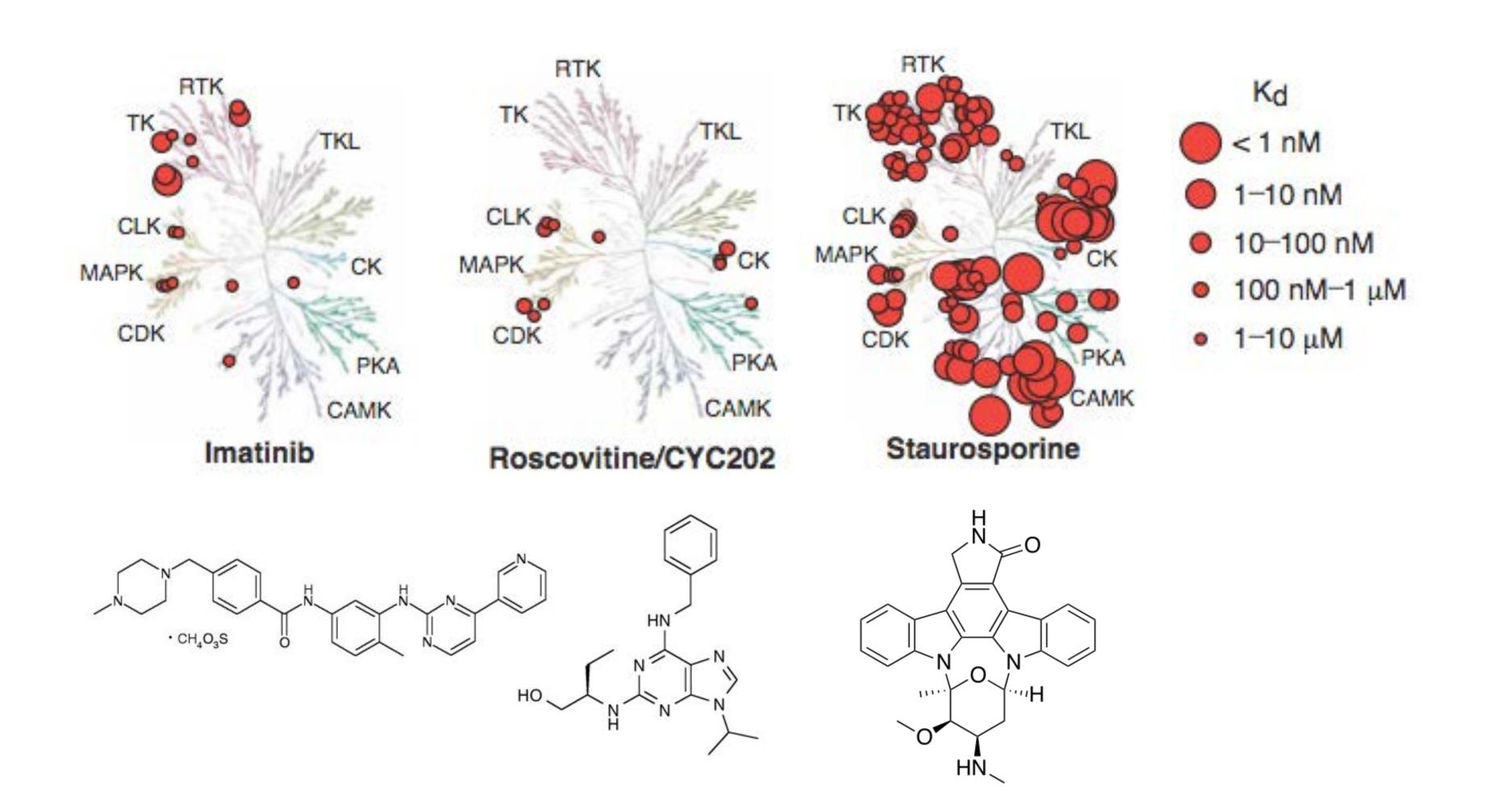
$$k_e \frac{q_i q_j}{r_{ij}}$$



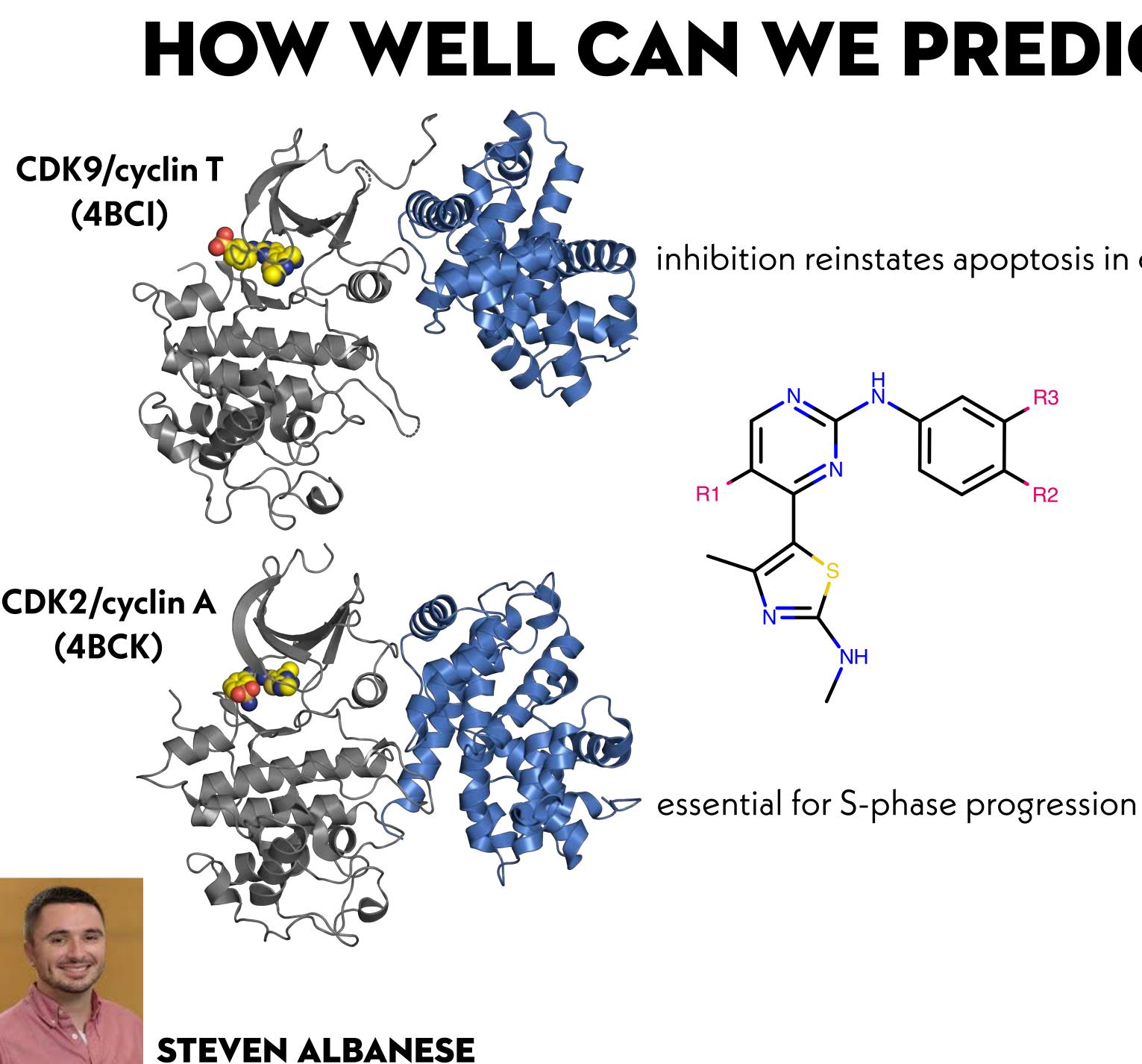
MD codes need to interoperate with ML frameworks and implement optimized ML potentials using common atomic featurizations

Ko, Finkler, Goedecker, and Behler https://doi.org/10.1038/s41467-020-20427-2

ALCHEMICAL FREE ENERGY CALCULATIONS CAN PREDICT SELECTIVITIES BETTER THAN AFFINITIES

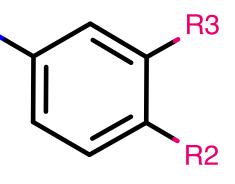


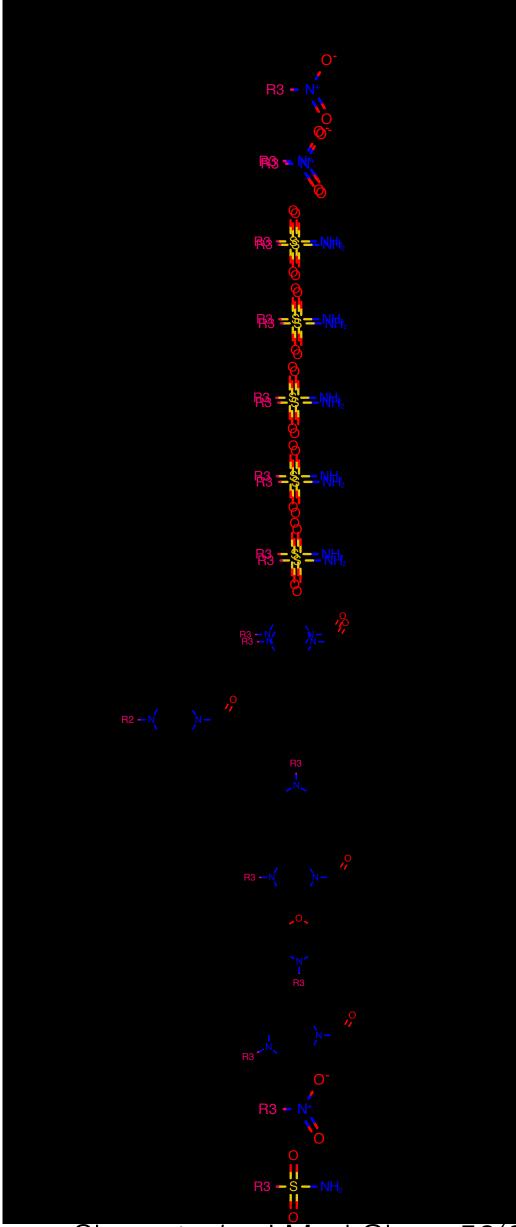
Nature Biotech 26:127, 2008



HOW WELL CAN WE PREDICT SELECTIVITY?

inhibition reinstates apoptosis in cancer cells

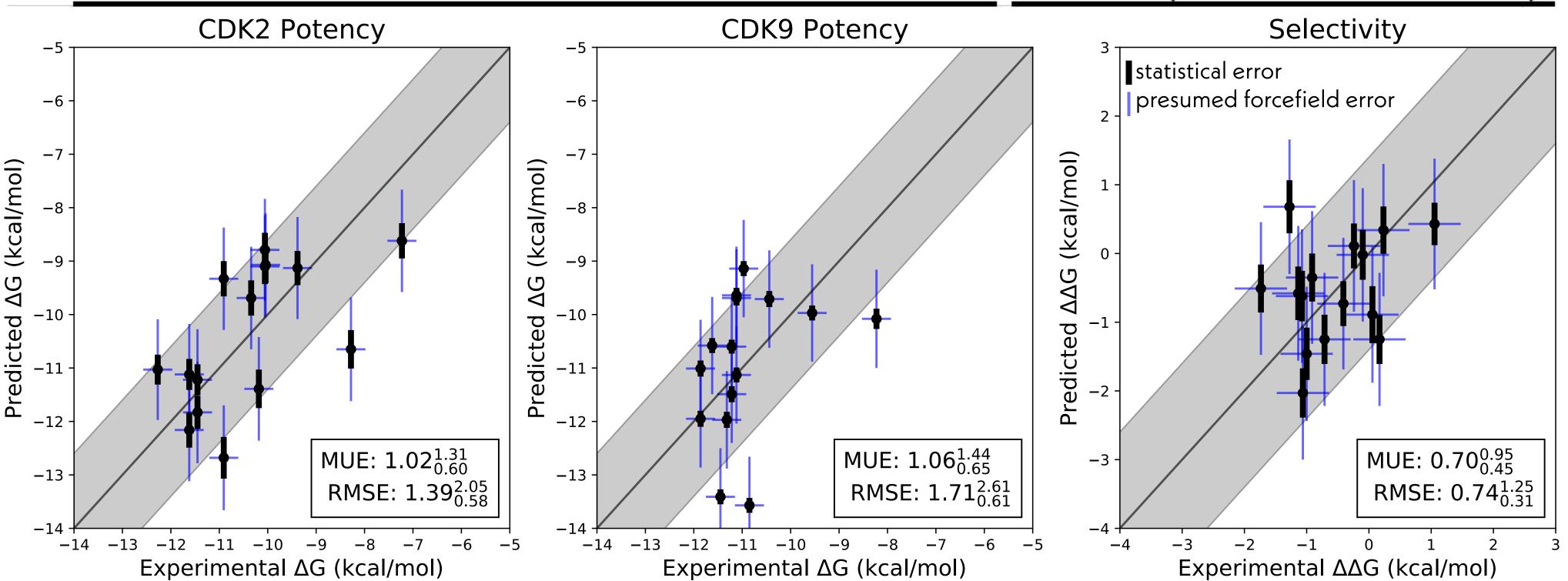




Shao et al., J Med Chem 56(3), 640–659

ALCHEMICAL METHODS CAN ACCURATELY PREDICT BINDING AFFINITIES TO INDIVIDUAL CDKS

ΔG



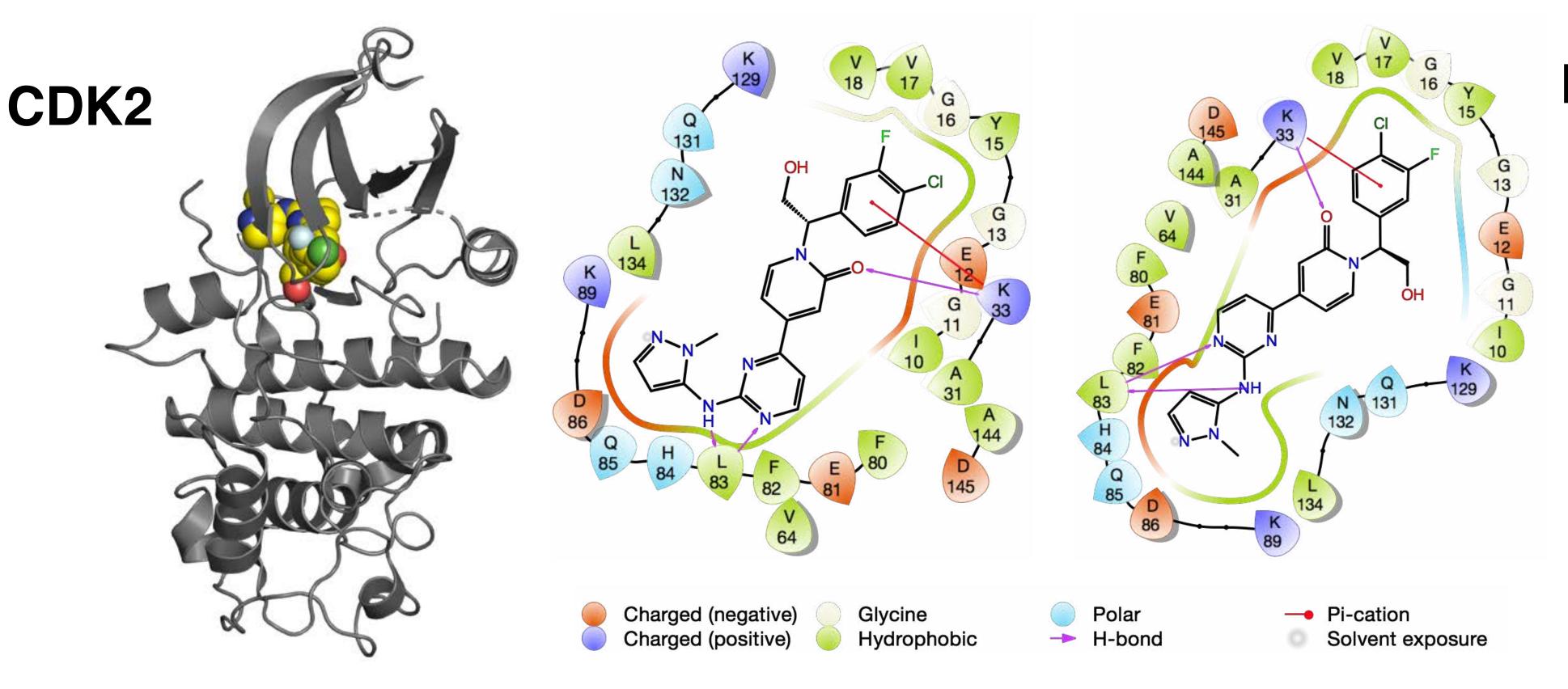
Individual affinities predicted confidently, but what does this mean for selectivity?

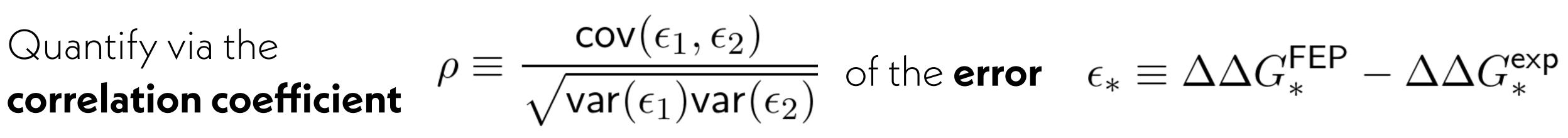
STEVEN ALBANESE

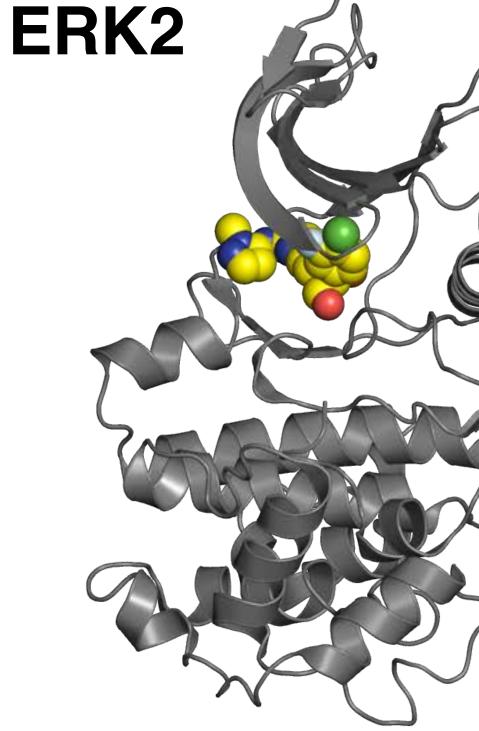
<u>ΔΔG (CDK9 - CDK2)</u>

FEP+/OPLS3 LINGLE WANG SCHRÖDINGER

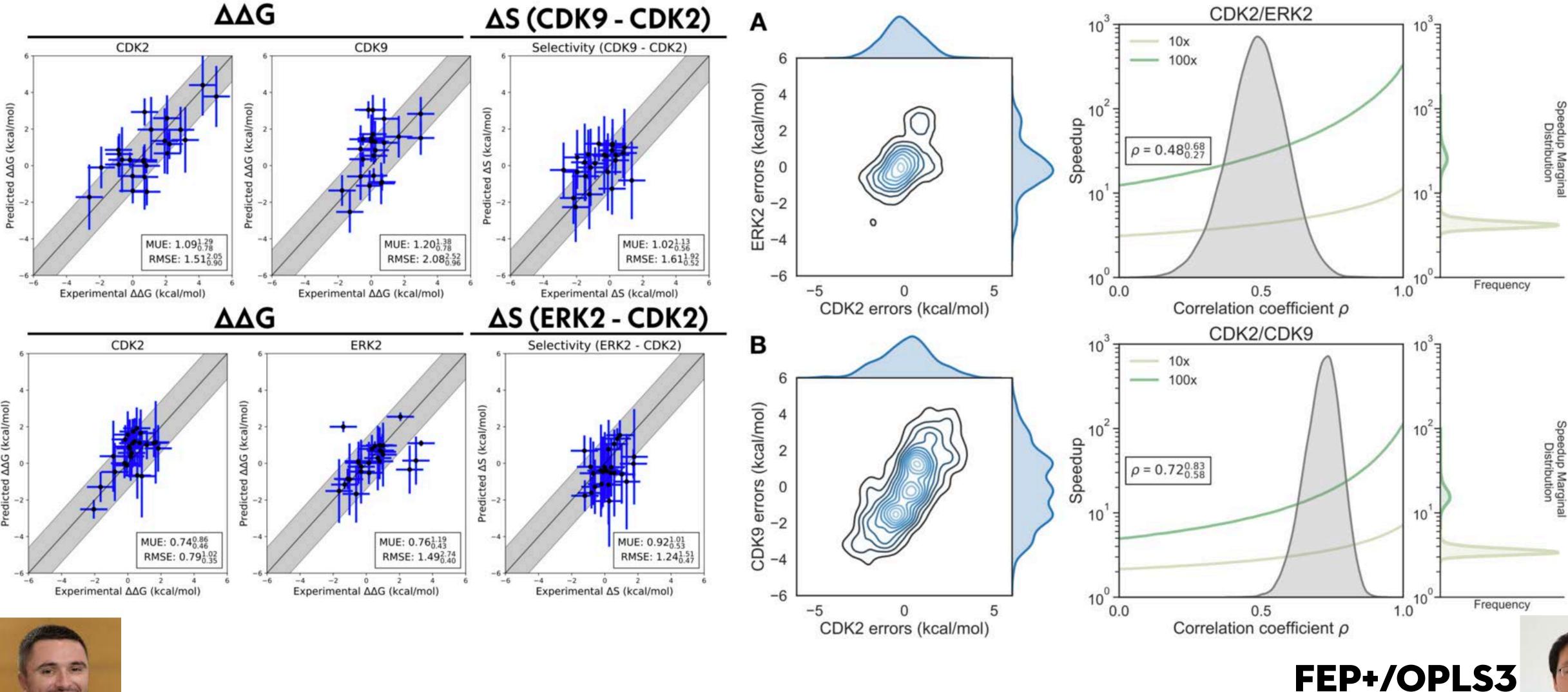
HOW MUCH DOES CANCELLATION OF ERROR **HELP SELECTIVITY PREDICTION?**







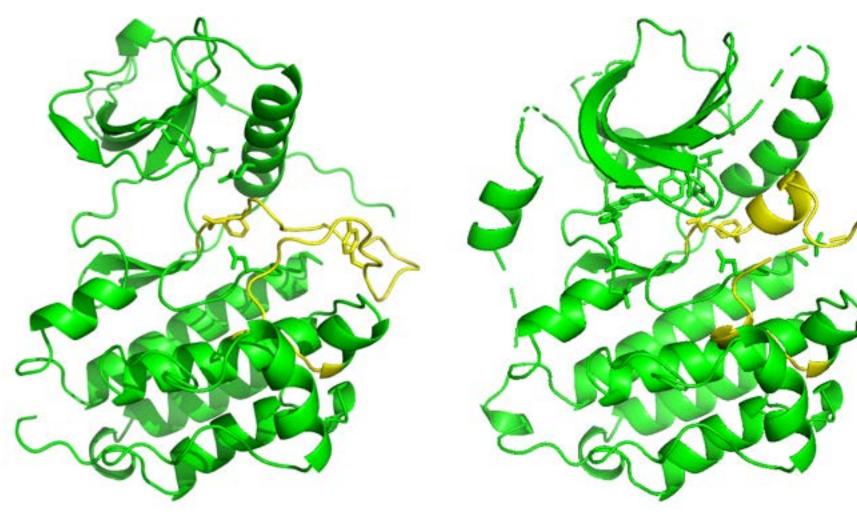
DIFFERENT SELECTIVITY PROBLEMS SHOW DIFFERENT DEGREES OF CANCELLATION



STEVEN ALBANESE

LINGLE WANG **SCHRÖDINGER**

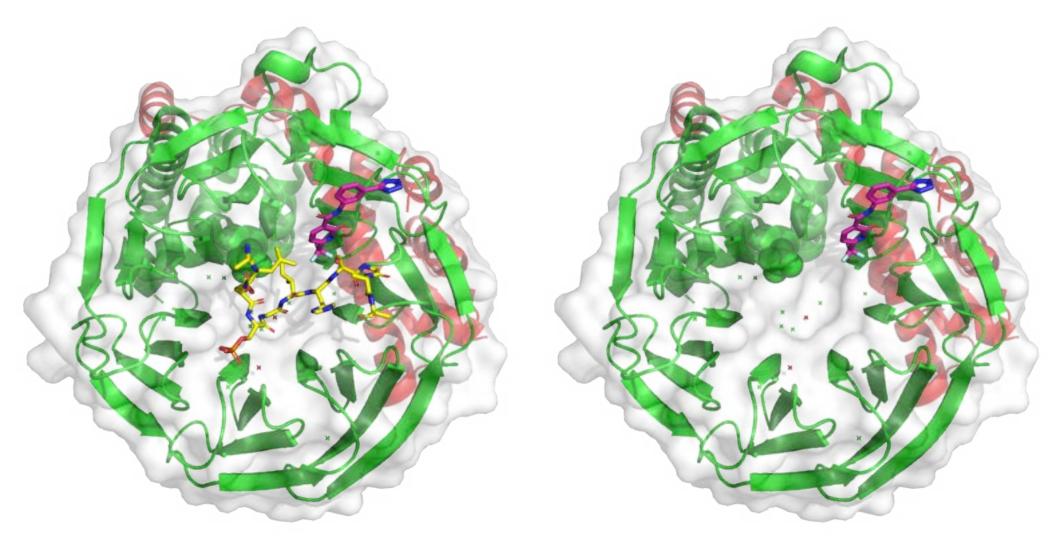
INTERLINE WILL PURSUE A NUMBER OF SELECTIVITY-FOCUSED DESIGN PROBLEMS



target (promotes downstream activity)

antitarget (inhibits downstream activity)

selective (de)stabilization of target conformations



target (complex to be stabilized) antitarget (individual binding partners)

selective (de)stabilization of complexes

ALCHEMICAL FREE ENERGY CALCULATIONS CAN PREDICT THE IMPACT OF MUTATIONS ON LIGAND BINDING OR PROTEIN-PROTEIN INTERACTIONS

6

4

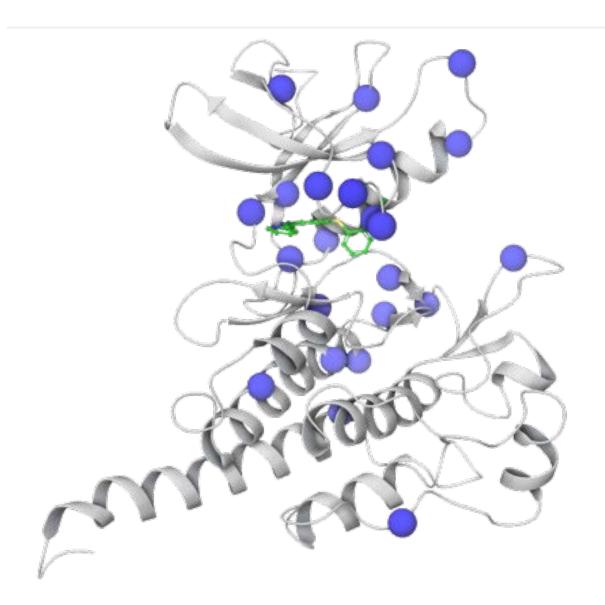
2

0

-2

-4

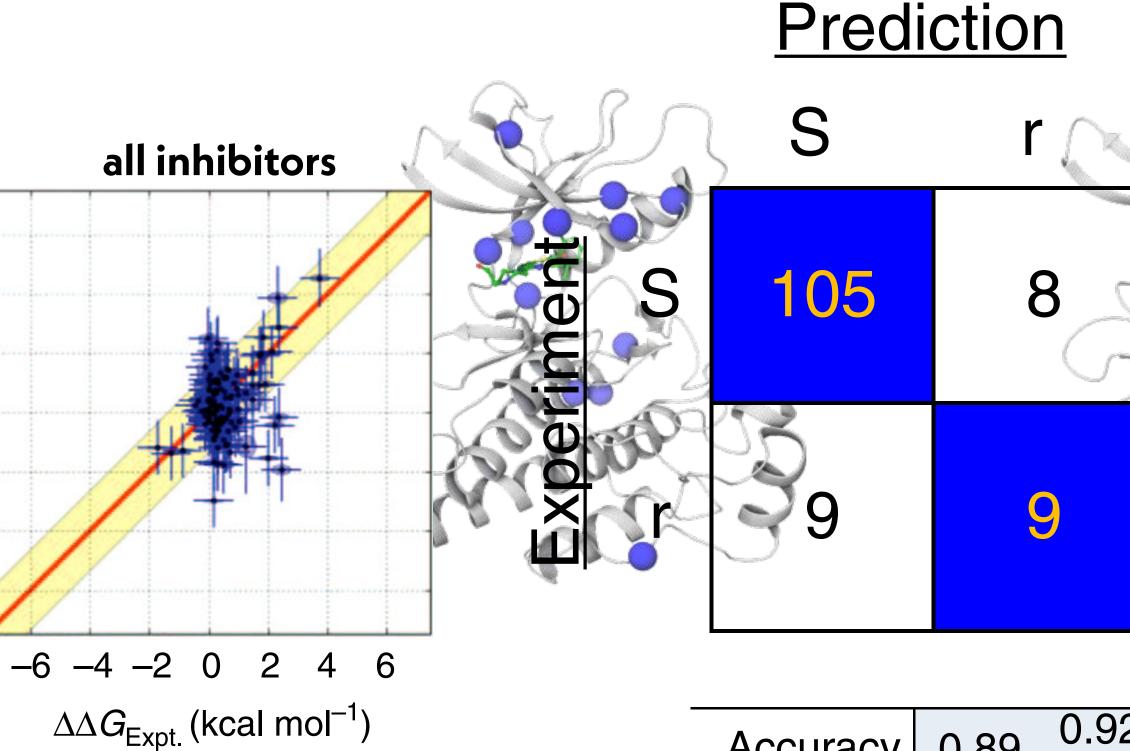
 $\Delta G_{\mathsf{FEP}_+}$ (kcal mol⁻¹)



ТКІ	N _{mut}	R	S	
Axitinib	26	0	26	
Bosutinib	21	4	17	
Dasatinib	21	5	16	
Imatinib	21	5	16	
Nilotinib	21	4	17	
Ponatinib	21	0	21	
Subtotal	131	18	113	
Erlotinib	7	1	6	
Gefitinib	6	0	6	
Total	144	19	125	

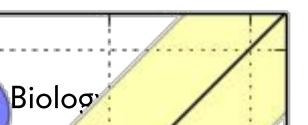
 $N_{\rm mut}$ Total number of mutants for which ΔplC_{50} data was available Number of Resistant, Susceptible mutants using 10-fold affinity change threshold

Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang. Co



RMSE	0.00 1.15	
(kcal mol ⁻¹)	0.99 0.85	

Accuracy	0.89	0.92
Specificity	0.91	0.94 0.89
Sensitivity	0.69	1.00 0.46



KEVIN HAUSER SCHRÖDINGER (NOW AT RUBRYC)

