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CONGRATULATIONS, KATE!

A CAREER OF
INSPIRATIONAL AND
VISIONARY WORK

KATHERINE HOLLOWAY



WHAT WILL IT TAKE FOR COMPUTATIONAL
CHEMISTRY TO DRIVE DISCOVERY PROGRAMS?

5 Oct 1981



WE’RE FACING COMPLEX MULTI-OBJECTIVE
DESIGN PROBLEMS

Target Product Profile (TPP) for oral SARS-CoV-2 main viral protease (Mpro) inhibitor Ed Griffen

Property Target range Rationale Medchemica

protease assay ICs50 < 10 nM Extrapolation from other anti-viral programs

viral replication assay ECso < 5 uM Suppression of virus at achievable blood levels

plaque reduction assay ECs0 < 5 uM Suppression of virus at achievable blood levels

route of administration oral bid/tid - compromise PK for potency if pharmacodynamic effect achieved

solubility > & Mg/l Aim for biopharmaceutical class 1 assuming <= 750 mg dose

half-life > 8 h (human) est from rat and dog Assume PK/PD requires continuous cover over plague inhibition for 24 h max bid dosing
Only reversible and monitorable toxicities No significant toxicological delays to development
No significant DDI - clean in 5 CYP450 isoforms  DDI aims to deal with co-morbidities / therapies,

safet hERG and NaV1.5 ICso > 50 uM cardiac safety for COVID-19 risk profile

y No significant change in QTc cardiac safety for COVID-19 risk profile

Ames negative Low carcinogenicity risk reduces delays in manufacturing

No mutagenicity or teratogenicity risk Patient group will include significant proportion of women of childbearing age


https://covid.postera.ai/covid
https://covid.postera.ai/covid

WE’RE FACING COMPLEX MULTI-OBJECTIVE
DESIGN PROBLEMS

target goals for

17-dimensional )
druglike molecule

hypercube

affinity

initial hits from HTS, DEL,
virtual screening, etc.



WE CAN LEVERAGE AN ENORMOUS AMOUNT

OF STRUCTURAL DATA 168

PDB statistics

last decade

http://www.rcsb.org/stats

100,000 new structures



ALCHEMICAL FREE ENERGY CALCULATIONS HAVE PROVENTO BE A
USEFUL WAY TO EXPLOIT STRUCTURAL DATA TO PREDICT AFFINITIES

AGbind
P+L—> PL
l thermodynamic TAGl AN
cycle

Pro—> Po

o

simulations of alchemical intermediates with attenuated interactions

restraint imposition discharging steric decoupling noninteracting

Includes all contributions from enthalpy and entropy of binding to a flexible receptor

1, ZN 1, Lo 43 4N / _8U
AG — 1 1 - — — 1 1 M Zn — d 5 n(x) artition function
1—N 5 1l Z]_ 6 Il Zl 22 ZN_l X € p f

Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, Schrédinger, and many more



ALCHEMICAL FREE ENERGY CALCULATIONS COME
IN TWO FLAVORS: RELATIVE AND ABSOLUTE

RELATIVE ABSOLUTE
ACTYbind

P+ L; = PL; P+L — PL
* AAG f * T
P+L—PL> P+o — Po

capable of transforming a few atoms

good for comparing similar ligands
requires same or similar scaffolds

requires common scaffold to anchor series

capable of disappearing a few atoms
good for comparing dissimilar ligands

can use entirely disparate scaffolds
requires use of restraints to anchor ligand

erlotinib
bosutinib

Cournia, Allen, Sherman 2017: http://dx.doi.org/10.1021/acs.jcim.7b00564 Aldeghi, Bluck, Biggin 2018: https://doi.org/10.1007/978-1-4939-7756-7 11



https://doi.org/10.1007/978-1-4939-7756-7_11
https://doi.org/10.1007/978-1-4939-7756-7_11
https://doi.org/10.1007/978-1-4939-7756-7_11
https://doi.org/10.1007/978-1-4939-7756-7_11
http://dx.doi.org/10.1021/acs.jcim.7b00564
http://dx.doi.org/10.1021/acs.jcim.7b00564

USEFUL ACCURACY IS SOMETIMES ACHIEVABLE

RELATIVE ABSOLUTE

AAG RMSE ~ 1.4 kcal/mol

for well-behaved™
proteins/chemistries:
3-5x reduction
in molecules synthesized

AAG

Wang et al. (Schrédinger) JACS 137:2695, 2015

. . * -
https://doi.org/10.1021/ja512751q best-case scenarios! Aldeghi et al. JACS 139:946, 2017.
Reanalysis: http://github.com/jchodera/jacs-dataset-analysis https://doi.org/10.1021/jacs.6b11467



https://doi.org/10.1021/ja512751q
http://github.com/jchodera/jacs-dataset-analysis
https://doi.org/10.1021/ja512751q
http://github.com/jchodera/jacs-dataset-analysis
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1021/jacs.6b11467

ALCHEMICAL FREE ENERGY CALCULATIONS CAN BE
USED TO COMPUTE MULTIPLE PROPERTIES OF INTEREST

driving affinity / potency
Schindler, Baumann, Blum et al. JCIM 11:5457, 2020
https://doi.org/10.1021/acs.jcim.0c00900

driving selectivity
Moraca, Negri, de Olivera, Abel JCIM 2019
https://doi.org/10.1021/acs.jcim.9600106

Aldeghi et al. JACS 139:946, 2017.
https://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity

Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang.
Communications Biology 1:70, 2018

https://doi.org/10.1038/s42003-018-0075-x
Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018
https://doi.org/10.1021/acscentsci.8b00717

optimizing thermostability

Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016
https://doi.org/10.1002 /anie.201510054



https://doi.org/10.1002/anie.201510054
https://doi.org/10.1002/anie.201510054
https://doi.org/10.1021/acs.jcim.9b00106
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1021/acs.jcim.9b00106
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1021/acs.jcim.0c00900
https://doi.org/10.1021/acs.jcim.0c00900

...AND HOLD THE POTENTIAL FOR COMPUTING MANY
MORE USEFUL OBJECTIVES FOR DISCOVERY PROGRAMS

partition coefficients (logP, logD) and permeabilities /P/?}?/?/f&/?/ﬁ?/%
(

structure-enabled ADME /Tox targets

hERG CYP3A4

porin permeation

crystal polymorphs, etc.



FREE ENERGY CALCULATIONS (AND MUCH OF COMP CHEM)
FUNDAMENTALLY RELIES ON MOLECULAR MECHANICS FORCE FIELDS

typical class | molecular mechanics force field

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011
Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011



FORCE FIELDS HAVE TRADITIONALLY BEEN
HEROIC PRODUCTS OF HUMAN EFFORT

experimental data
quantum chemistry
keen chemical intuition

!

heroic effort by graduate
students and postdocs

a parameter set we

desperately hope someone g ———

actually uses



FORCE FIELDS HAVE TRADITIONALLY BEEN
HEROIC PRODUCTS OF HUMAN EFFORT

Amber20 recommendations

proteins

Quickly adds up to >100 human-years

Intended to/be compatible, but not co-parameterized
Significant effort is required to extend to new areas

(e.g. covalentinhibitors, bio-inspired polymers, etc.)
Nobody is going to want to refit this based on some new data

How can we bring this problem into the modern era?



AS DRUG DISCOVERY EXPLORES NEW PARTS OF
CHEMICAL SPACE, HOW CAN FORCEFIELDS KEEP UP?

The Generalized Amber Forcefield (GAFF) was parameterized with this chemical universe:

17 18

GAFF 1was finished in 1999 ! © 2

Extension to new chemical space is nontrivial
Parameter fitting code was never released

Atom types cause numerous complications
Wang J, Wolf RM, Caldwell JW, Kollman PA, and Case DA. J Comput Chem 25:1157, 2004.





http://openforcefield.org
http://openforcefield.org
http://openforcefield.org
http://openforcefield.org

AIMS TO BUILD A
MODERN INFRASTRUCTURE FOR FORCE FIELD SCIENCE

@ Open source Python Toolkit: use the parameters in most simulation packages

Open curated QM / physical property datasets: build your own force fields

Open source infrastructure: for improving force fields with in-house data

Open science: everything we do is free, permissively licensed, and online

http://openforcefield.org



http://openforcefield.org
http://openforcefield.org

WE’VE MADE RAPID AND SIGNIFICANT PROGRESS

Open Force Field Initiative

GAFF 1 OPLS2.1 GAFF 2 smirnoff99Frosst openff 1.0
(1999) (2015) (2016) (2018) (2019)

"parsley”

thrombin
PDB101: 1PPB

HANNAH BRUCE MACDONALD
MSKCC http://github.com/choderalab/perses DOMINIC RUFA
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FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

Input molecular graph

H\ /H
Ci—Cs o
// \ H
H—C, C.—C,—O—H
\ /-
/ \
H °,Q—C8—(‘39—H
H

JOSH FASS

aspirin



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule 3 atom-types

hydrogen

JOSH FASS

aspirin



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule 4 atom-types

hydrogen

. carbon

carbon in an aromatic ring

oxygen

JOSH FASS

aspirin



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule 5 atom-types

hydrogen

hydrogen bound to a
carbon in an aromatic ring

. carbon

carbon in an aromatic ring

oxygen

JOSH FASS

aspirin



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule 6 atom-types
hydrogen
\ / [ O-, hydrogen bound to a
/ C,—Cq | ‘ carbon in an aromatic ring
/ \
& oo B B corvor
\ _/ = , B
C3 —C 4 carbon in an aromatic ring
/ \
| O _Cg _’7 carbon bound to oxygen

oxygen
JOSH FASS

aspirin



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule / atom-types
hydrogen
\ / [ O-, hydrogen bound to a
C,—Cq carbon in an aromatic ring
// -
—C, CS — C7 — 00— hydrogen bound to an
\ / p— oxygen
a—e) B cos
/ \ 1 carbon

.0—C,
- carbon in an aromatic ring

carbon bound to an oxygen
JOSH FASS

aspirin oxygen



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

JOSH FASS

“atom-typed” molecule

H
\C1 —Cﬁ/ O
// \ | ‘

— G G—G —0—H
\%:C{ =
/ \

a '-Q_Cs_”
aspirin

8 atom-types

hydrogen

hydrogen bound to a
carbon in an aromatic ring

hydrogen bound to a
carbon in an aromatic ring,
and 3 bonds away from an

oxygen

hydrogen bound to an

oxygen
. carbon

carbon in an aromatic ring

carbon bound to an oxygen

oxygen



FUNDAMENTALLY, FORCE FIELD PARAMETERIZATION IS DIFFICULT
BECAUSE IT’S A MIXED DISCRETE-CONTINUOUS OPTIMIZATION PROBLEM

“atom-typed” molecule 8 atom-types
H hydrogen
\ / K hydrogen bound to a
C,—C4 O carbon in an aromatic ring

hydrogen bound to a
carbon in an aromatic ring,
and 3 bonds away from an

oxygen

How elaborate should we go?
* How many distinct atom types are justified?

* How complex should their definitions be?

H .0—C
. : , . carbon

carbon in an aromatic ring

ydrogen bound to an
oxygen

JOSH FASS

as pi ri n carbon bound to an oxygen

oxygen






GRAPH CONVOLUTIONAL NETWORKS CAN LEARN CHEMICAL
ENVIRONMENTS WITHOUT REQUIRING DISCRETE ATOM TYPES

chemical graph of molecule
to be parameterized Graph convolutional network

YUANQING
JOSHFASS  WANG

GAFF 1.81 atom types predicted with
98.31% [95% Cl: 97.94, 98.63] accuracy



GRAPH CONVOLUTIONAL NETWORKS CAN LEARN CHEMICAL
ENVIRONMENTS WITHOUT REQUIRING DISCRETE ATOM TYPES

chemical graph of molecule
to be parameterized Graph convolutional network

YUANQING
JOSHFASS  WANG



GRAPH CONVOLUTIONAL NETWORKS ARE
PARTICULARLY WELL-SUITED TO CHEMISTRY

molecule bond atom
predict \ T /
properties

Learns electronegativity (e;) and hardness (s;)
subject to fixed charge sum constraint:

1A 2
{QZ} argmlnzez% | 9 S44;

Zqz Zqz—

Figure adapted from Zhou Z
arXiv:1706.09916

YUANQING
WANG

Graph Inference on MoLEcular Topology

preprint: https://arxiv.org/abs/1909.07903
code: http://github.com/choderalab/gimlet



https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet
https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet

espaloma: extensible surrogate potential of ab initio
learned and optimized by message-passing algorithm

YUANQING
JOSHFASS  WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma



https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma

espaloma: extensible surrogate potential of ab initio
learned and optimized by message-passing algorithm

use of only chemical graph
means that model can generate
parameters for small molecules,
proteins, nucleic acids, covalent
ligands, carbohydrates, etc.

YUANQING
JOSHFASS  WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma



https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma

espaloma: extensible surrogate potential of ab initio
learned and optimized by message-passing algorithm

entire model is end-to-end
differentiable so can be fit to
any loss function by standard
automatic differentiation
machine learning frameworks

YUANQING
JOSHFASS  WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma



https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma

espaloma: extensible surrogate potential of ab initio
learned and optimized by message-passing algorithm

modular and extensible
handling of potential terms:
charge model parameters,
point polarizabilities,
alternative vdW formes,
special 1-4 parameters, etc.

YUANQING
JOSHFASS  WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma



https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma

ESPALOMA MAKES BUILDING A NEW FORCE FIELD EASY

building a new force field
espaloma architecture

(implemented in pytorch)

http://github.com/choderalab/espaloma

YUANQING WANG


http://github.com/choderalab/espaloma
http://github.com/choderalab/espaloma

ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG



https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma

ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

Comparison with QCArchive data

o - T — initial QM minimized
M
a | —&— Sspaloma
Il:l| N L "Ju
-4 S | L aaad
Cor Y Wl Lt
N\N/N A ".". :':‘h....
H = a | *visa0883808008
¢ !
| W DFT B3LYP-D3(BJ) / DZVP

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA OUTPERFORMS CURRENT FORCE FIELDS IN M ACCURACY
AND CAN BE EASILY TRAINED FOR HETEROGENEOUS SYSTEMS

espaloma can produce a complete protein+ligand
force field suitable for simulation

ligand heavy atom RMSD (after aligning protein)

Tyk2 from OpenFF benchmark set

espaloma force field (protein/ligand)

+ TIP3P water
https://arxiv.org/abs/2105.06222

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA SELF-CONSISTENTLY TREATS BIOPOLYMERS, SMALL
MOLECULES, AND COVALENT LIGANDS/MODIFICATIONS

preprint: https://arxiv.org/abs/2010.01196
code: http://github.com/choderalab/espaloma YUANQING WANG
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ESPALOMA CAN EASILY FIT BOTH QUANTUM
CHEMICAL AND EXPERIMENTAL FREE ENERGIES

experimental hydration

free energies from FreeSolv
https://github.com/MobleyLab/FreeSolv

loss function:

N 2
AG, (Byy) — AGEP
L(@yy) = Y ACn(Eay) = AGT

n=1

Here, AG estimated via one-step free energy perturbation,

but can easily differentiate properties through MBAR

YUANQING
JOSHFASS  WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma

RMSE (kcal/mol)
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CLASS Il FORCE FIELDS MAY PROVIDE SUBSTANTIALLY INCREASED
ACCURACY WITH RESPECT TO QUANTUM CHEMISTRY AT MM SPEEDS

Hwang et al. (1994) http://doi.org/10.1021/ja00085a036



http://doi.org/10.1021/ja00085a036
http://doi.org/10.1021/ja00085a036

A NEW GENERATION OF QUANTUM MACHINE LEARNING (QML)
POTENTIALS PROVIDE SIGNIFICANTLY MORE FLEXIBILITY IN
FUNCTIONAL FORM, THOUGH AT MUCH GREATER COST

ANI family of guantum machine learning (QML) potentials

radial and angular features deep neural network for each atom excellent agreement with DFT

OLEXANDR ADRIAN
ISAYEV ROITBERG

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017.
http://doi.org/10.1039/c6sc05720a



http://xlink.rsc.org/?DOI=c6sc05720a
http://xlink.rsc.org/?DOI=c6sc05720a

HYBRID QUANTUM MACHINE LEARNING 7/ MOLECULAR MECHANICS
(@ML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/gmlify




HYBRID QUANTUM MACHINE LEARNING 7/ MOLECULAR MECHANICS
(@ML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



HYBRID QUANTUM MACHINE LEARNING 7/ MOLECULAR MECHANICS
(@ML/MM) FREE ENERGY CALCULATIONS CUT ERROR IN HALF




HYBRID QUANTUM MACHINE LEARNING 7/ MOLECULAR MECHANICS
(@ML/MM) POST-PROCESSING CAN IMPROVE ACCURACY



COMPUTATIONAL BOTTLENECKS IN CURRENT QML
MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS
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atomic feature NN energy/force tensor cores

coordinates computation computation accumulation
we need FP32!

We can speed this up with (maybe INT32 too fixed-point)

OpenMM GPU kernels

using common pairlists, etc.
(e.g. for ANI models)

TensorFlow/PyTorch do this
efficiently, and hardware will
keep getting better for this step



COMPUTATIONAL BOTTLENECKS IN CURRENT QML
MODELS CAN BE SPED UP WITH CUSTOM GPU KERNELS

NNPOps library
htt ps://github.com/openmm/nnpops
* CUDA/CPU accelerated kernels

* APl forinclusion in MD engines

* Ops wrappers for ML frameworks
(PyTorch, TensorFlow, JAX)
* Community-driven, package agnostic
(~5x slower than MD right now)
model distillation will become important in building single models

that are efficient on hardware

Peter Eastman, Raimondas Galvelis, Gianni de Fabritiis
code: https://github.com/openmm/nnpops
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PURE QUANTUM MACHINE LEARNING (QML) POTENTIALS CAN BE USED
TO COMPUTE FREE ENERGY DIFFERENCES BETWEEN CHEMICAL SPECIES

Potentials are free of singularities, so simple linear alchemical potentials
can robustly compute alchemical free energies

Simple atomic restraints can be used to improve efficiency

by preventing atoms from flying away

MARCUS

JOSH FASS WIEDER

ANI-2x
preprint: https://doi.org/10.1101/2020.10.24.353318
code: https://github.com/choderalab/neutromeratio
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OML POTENTIALS CAN LEARN FROM EXPERIMENTAL
DATA TO IMPROVE PHYSICAL MODELS

physical models are data-efficient: retraining on small number of experimental

measurements improves accuracy and generalizes well

AG

train: 221 tautomer pairs
validate: 57 tautomer pairs
test: /2 tautomer pairs

MARCUS

JOSH FASS WIEDER

preprint: https://doi.org/10.1101/2020.10.24.353318
code: https://github.com/choderalab/neutromeratio
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OpenMM and the Open Force Field Initiative
are working closely with MolSSI to expand the
QCArchive to support the construction of
next-generation machine learning force fields

http://qgcarchive.molssi.org
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INTEGRATING MACHINE LEARNING WILL COMPLETELY CHANGE
PRACTICE IN STRUCTURE-ENABLED DRUG DISCOVERY

week 1 week 2
2 o 2 1 p:leej:ftr,‘:/ synthesis new data p:i:::ft?:/ synthesis new data
using published force field model using the same published force field model!
we haven’t learned anything from the data
week 1 week 2
2025
designs/ designs/
predictions synthesis new data build model 2.0! predictions synthesis
1.0 2.0
using force field model using new model tuned to target

built from public + private data from first week’s data
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