LEARNING BIOMOLECULAR POTENTIALS FOR DRUG DISCOVERY

John D. Chodera

MSKCC Computational and Systems Biology Program http://www.choderalab.org

DISCLOSURES:

Scientific Advisor, OpenEye Scientific and Foresite Labs All opinions/views are my own.

NeurIPS - recorded 25 Nov 2020

WE'RE BUILDING TOOLS TO ENABLE AUTONOMOUS MOLECULAR DESIGN

WE'RE BUILDING TOOLS TO ENABLE **AUTONOMOUS MOLECULAR DESIGN**

Target Product Profile (TPP) for oral SARS-CoV-2 main viral protease (Mpro) inhibitor

Property	Target range	Rationale
protease assay	IC ₅₀ < 10 nM	Extrapolatio
viral replication assay	$EC_{50} < 5 \ \mu M$	Suppressior
plaque reduction assay	$EC_{50} < 5 \ \mu M$	Suppressior
route of administration	oral	bid/tid - con
solubility	> 5 mg/mL	Aim for biop
half-life	> 8 h (human) est from rat and dog	Assume PK
safety	Only reversible and monitorable toxicities No significant DDI - clean in 5 CYP450 isoforms hERG and NaV1.5 $IC_{50} > 50 \mu M$ No significant change in QTc Ames negative No mutagenicity or teratogenicity risk	No significat DDI aims to cardiac safe cardiac safe Low carcinc Patient grou

An international effort to **DISCOVER A COVID ANTIVIRAL**

https://covid.postera.ai/covid

- on from other anti-viral programs
- n of virus at achievable blood levels
- n of virus at achievable blood levels
- mpromise PK for potency if pharmacodynamic effect achieved
- pharmaceutical class 1 assuming <= 750 mg dose
- /PD requires continuous cover over plaque inhibition for 24 h max bid dosing
- nt toxicological delays to development
- deal with co-morbidities / therapies,
- ety for COVID-19 risk profile
- ety for COVID-19 risk profile
- genicity risk reduces delays in manufacturing
- ip will include significant proportion of women of childbearing age

DRUG DISCOVERY INVOLVES COMPLEX DESIGN OBJECTIVES

solubility

affi

sel

dectivity

initial HTS or virtual screening hits

TO GET THERE, DRUG DESIGN INVOLVES MAKING A LOT OF DECISIONS **ABOUT WHICH MOLECULES TO MAKE AND ASSAYS TO RUN**

<u>assay purpose</u>

Does it inhibit the target? How does it bind? Does it work in cells? Does it have a chance of working in humans?

2	
er	
Ħ	

Tier

Does it kill the virus in cells?

Could it cause bad side effects?

ŝ	
-	
e	
Ξ	

Can oral dosing deliver sufficient drug? Does it actually work against the disease?

AUTONOMOUS REASONING ENGINES REQUIRE MODELS THAT CAN LEARN

ENUMERATE HYPOTHESES

> EVALUATE HYPOTHESES

EXIT CYCLE

http://www.rcsb.org/stats

THE LAST DECADE HAS PRODUCED AN ENORMOUS NUMBER OF BIOMOLECULAR STRUCTURES

last decade

THE LAST DECADE HAS PRODUCED AN ENORMOUS NUMBER OF BIOMOLECULAR STRUCTURES

Number of Structures Released Annually

http://www.rcsb.org/stats

Total Number Available

last decade

BIOMOLECULAR SIMULATIONS CAN PREDICT USEFUL PROPERTIES LIKE BINDING AFFINITIES, BUT THEY CAN'T LEARN FROM DATA

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011 Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

.OR CAN THEY?

BIOMOLECULAR SIMULATIONS CAN PREDICT USEFUL PROPERTIES LIKE BINDING AFFINITIES, BUT THEY CAN'T LEARN FROM DATA

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011 Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

.OR CAN THEY?

HOW ARE FORCEFIELDS MADE?

HOW ARE FORCEFIELDS MADE?

experimental data quantum chemistry keen chemical intuition

a parameter set we desperately hope someone actually uses heroic effort by graduate students and postdocs

FORCE FIELD CONSTRUCTION **TRADITIONALLY REQUIRES HEROIC EFFORT** Amber20 recommendations

proteins

post-translational modifications

water ions

small molecules

nucleic acids

lipids

carbohydrates

J. A. Maier; C. Martinez; K. Kasavajhala; L. Wickstrom; K. E. Hauser; C. Simmerling. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., **2015**, *11*, 3696–3713.

W. D. Cornell; P. Cieplak; C. I. Bayly; I. R. Gould; K. M. Merz, Jr.; D. M. Ferguson; D. C. Spellmeyer; T. Fox; J. W. Caldwell; P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117, 5179-5197.

N. Homeyer; A. H. C. Horn; H. Lanig; H. Sticht. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model., 2006, 12, 281-289.

H. W. Horn; W. C. Swope; J. W. Pitera; J. D. Madura; T. J. Dick; G. L. Hura; T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 2004, 120, 9665-9678.

I. S. Joung; T. E. Cheatham, III. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B, 2009, 113, 13279-13290.

P. Li; B. P. Roberts; D. K. Chakravorty; K. M. Merz, Jr. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. J. Chem. Theory Comput., 2013, 9, 2733-2748.

J. Wang; R. M. Wolf; J. W. Caldwell; P. A. Kollamn; D. A. Case. Development and testing of a general Amber force field. J. Comput. Chem., 2004, 25, 1157–1174.

R. Galindo-Murillo; J. C. Robertson; M. Zgarbovic; J. Sponer; M. Otyepka; P. Jureska; T. E. Cheatham. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput., 2016, 12 4114-4127

A. Perez; I. Marchan; D. Svozil; J. Sponer; T. E. Cheatham; C. A. Laughton; M. Orozco. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. *Biophys.* J., 2007, 92, 3817–3829.

M. Zgarbova; M. Otyepka; J. Sponer; A. Mladek; P. Banas; T. E. Cheatham; P. Jurecka. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput., 2011, 7, 2886–2902.

Å. Skjevik; B. D. Madej; R. C. Walker; K. Teigen. Lipid11: A modular framework for lipid simulations using amber. J. Phys. Chem. B, 2012, 116, 11124-11136.

C. J. Dickson; B. D. Madej; A. A. Skjevik; R. M. Betz; K. Teigen; I. R. Gould; R. C. Walker. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput., 2014, 10, 865-879.

K. N. Kirschner; A. B. Yongye; S. M. Tschampel; J. González-Outeiriño; C. R. Daniels; B. L. Foley; R. J. Woods. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem., 2008, 29 622-655

FORCE FIELD CONSTRUCTION **TRADITIONALLY REQUIRES HEROIC EFFORT** Amber20 recommendations proteins

post-translational modifications

Quickly adds up to >100 h ions

lipids

carbohydrates

J. A. Maier; C. Martinez; K. Kasavajhala; L. Wickstrom; K. E. Hauser; C. Simmerling. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., **2015**, 11, 3696–3713.

W. D. Cornell; P. Cieplak; C. I. Bayly; I. R. Gould; K. M. Merz, Jr.; D. M. Ferguson; D. C. Spellmeyer;

. H. C. Horn; H. Lang; H. Sticht. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohisti-J. Mol. Model., **2006**, 12, 281–289

H. W. Horn; W. C. Swope; J. W. Pitera; J. D. Madura; T. J. Dick; G. L. Hura; T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 2004, 120,

- Intended to be compatible, but not co-parameterized ic in parameters. J. Phys. Chem. B, 2009, 113, 13279-
- Significant effort is required to extend to new areas in Explicit Solvent. J. Chem. Theory Comput., 2013, 9,
- (e.g. covalent inhibitors, bio-inspired polymers, etc.), 1157-1174.
- Nobody is going to want to refit this based on some new data. J. Chem. Theory Comput., 2016,

A. Perez; I. Marchan; D. Svozil; J. Sponer; T. E. Cheatham; C. A. Laughton; M. Orozco. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. Biophys. *J.*. **2007**, *92*, 3817–3829.

M. Zgarbova; M. Otyepka; J. Sponer; A. Mladek; P. Banas; T. E. Cheatham; P. Jurecka. Refinement of the How can we bring this problem into the modern era?

> Å. Skjevik; B. D. Madej; R. C. Walker; K. Teigen. Lipid11: A modular framework for lipid simulations using amber. J. Phys. Chem. B, 2012, 116, 11124-11136.

> C. J. Dickson; B. D. Madej; A. A. Skjevik; R. M. Betz; K. Teigen; I. R. Gould; R. C. Walker. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput., 2014, 10, 865-879.

> K. N. Kirschner; A. B. Yongye; S. M. Tschampel; J. González-Outeiriño; C. R. Daniels; B. L. Foley; R. J. Woods. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem., 2008, 29 622-655

An open and collaborative approach to better force fields

OPEN SOURCE

Software permissively licensed under the MIT License and developed openly on GitHub.

Scientific reports as blog posts. webinars and preprints

open forcefield

OPEN SCIENCE

OPEN DATA

Curated quantum chemical and experimental datasets used to parameterize and benchmark Open Force Fields

http://openforcefield.org

THE OPEN FORCE FIELD INITIATIVE AIMS TO BUILD A **MODERN INFRASTRUCTURE FOR FORCE FIELD SCIENCE**

Open source <u>Python Toolkit</u>: use the parameters in most simulation packages

Open source infrastructure: for improving force fields with in-house data

Open science: everything we do is free, permissively licensed, and online

Open curated QM / physical property datasets: build your own force fields

http://openforcefield.org

input molecular graph

JOSH FASS

"atom-typed" molecule

aspirin

JOSH FASS

3 atom-types

"atom-typed" molecule

aspirin

JOSH FASS

4 atom-types

"atom-typed" molecule

JOSH FASS

"atom-typed" molecule

JOSH FASS

"atom-typed" molecule

JOSH FASS

"atom-typed" molecule

aspirin

JOSH FASS

JOSH FASS

GRAPH CONVOLUTIONAL NETWORKS CAN LEARN CHEMICAL ENVIRONMENTS WITHOUT REQUIRING DISCRETE ATOM TYPES

GRAPH CONVOLUTIONAL NETWORKS CAN LEARN CHEMICAL ENVIRONMENTS WITHOUT REQUIRING DISCRETE ATOM TYPES

2.0% 0.1% 0.5% □ 96.3% 16.7% 100.0% **1** 2.2%2.3% 89.8% 0.5%2 100.0% S Learned Type cp ca 99.3% 86.7% 0.7% 13.3% 0.2%1.5%0.4% 95.8% 7.0% 8 2.0% 6.1% 2.5%90.7% 8 40.0% 66.7% cg 16.7% 60.0% ch chc c1 c2 c3 ca cp cc ce cg 5.7% 0.4% 2.1% 24.4% 41.0% 0.2% 23.4% 2.4% 0.3% c2c3 0.2% Reference Type

GAFF 1.81 atom types predicted with 98.31% [95% Cl: 97.94, 98.63] accuracy

GRAPH CONVOLUTIONAL NETWORKS CAN LEARN CHEMICAL ENVIRONMENTS WITHOUT REQUIRING DISCRETE ATOM TYPES

nc	Sp2 N	in non-pu	re aromatic	systems		
nd	Sp2 N	in non-pu	re aromatic	systems,	identical	. t
ne	Inner	Sp2 N in	conjugated	systems		
nf	Inner	Sp2 N in	conjugated	systems,	identical	to

GRAPH CONVOLUTIONAL NETWORKS ARE PARTICULARLY WELL-SUITED TO CHEMISTRY

GRAPH CONVOLUTIONAL NETWORKS ARE PARTICULARLY WELL-SUITED TO CHEMISTRY

Learns **electronegativity** (e_i) and **hardness** (s_i) subject to fixed charge sum constraint:

$$\sum_{i} \frac{\hat{e}_{i}q_{i} + \frac{1}{2}\hat{s}_{i}q_{i}^{2}}{\sum_{i}q_{i} = Q}$$

Graph Inference on MoLEcular Topology

preprint: https://arxiv.org/abs/1909.07903 code: http://github.com/choderalab/gimlet

JOSH FASS

code: <u>https://github.com/choderalab/espaloma</u>

use of only **chemical graph** means that model can generate parameters for small molecules, proteins, nucleic acids, covalent ligands, carbohydrates, etc.

YUANQING JOSH FASS WANG

JOSH FASS

JOSH FASS

ESPALOMA CAN LEARN EXISTING MOLECULAR MECHANICS FORCE FIELDS

recovery of GAFF 1.81 parameters and energies on AlkEthOH test set

Quantity

Harmonic Bond + Angle Energy (kcal/m

Bond Force Constant k_r (kcal / (mol * angstro Equilibrium Bond Length b_r (angstrom Angle Force Constant k_{θ} (kcal / (mol * rad * Equilibrium Angle Value b_{θ} (rad)

YUANQING JOSH FASS WANG

preprint: <u>https://arxiv.org/abs/2010.01196</u> code: <u>https://github.com/choderalab/espaloma</u>

		Test	
	RMSE	MAPE	R^2
iol)	$0.4392_{\scriptstyle 0.4392}^{\scriptstyle 0.4392}$	$0.0157^{0.0162}_{0.0153}$	$0.9958_{0.9955}^{0.9961}$
om ** 2))	$35.4048^{50.2660}_{18.0387}$	$0.0180_{0.0148}^{0.0215}$	$0.8619^{0.9653}_{0.7154}$
ר)	$0.0127^{0.0200}_{0.0013}$	$0.0015_{0.0011}^{0.0021}$	$0.9956^{1.0000}_{0.9890}$
** 2))	$3.7995_{3.6293}^{3.9648}$	$0.0276_{0.0264}^{0.0290}$	$0.8601_{0.8361}^{0.8805}$
	$0.0043_{0.0041}^{0.0045}$	$0.0018_{0.0017}^{0.0018}$	$0.9202_{0.9018}^{0.9335}$

ESPALOMA CAN EASILY FIT BOTH QUANTUM CHEMICAL AND PHYSICAL PROPERTY DATA

energies and gradients from OpenFF OptimizationDataset 1.0 from MoISSI QCArchive compared with opeff-1.2.0 ("Parsley") force field fit to same data

YUANQING JOSH FASS WANG

preprint: <u>https://arxiv.org/abs/2010.01196</u> **code**: <u>https://github.com/choderalab/espaloma</u>

MolSSI QCArchive: <u>https://qcarchive.molssi.org</u>

ESPALOMA CAN EASILY FIT BOTH QUANTUM CHEMICAL AND PHYSICAL PROPERTY DATA

experimental hydration free energies from **FreeSolv** <u>https://github.com/MobleyLab/FreeSolv</u>

loss function:

$$L(\Phi_{NN}) = \sum_{n=1}^{N} \frac{\left[\Delta G_n(\Phi_{NN}) - \Delta G_n^{\exp}\right]^2}{\sigma_n^2}$$

Here, ΔG estimated via one-step free energy perturbation, but can easily differentiate properties through MBAR

YUANQING JOSH FASS WANG

preprint: https://arxiv.org/abs/2010.01196
code: https://github.com/choderalab/espaloma

CLASS II FORCE FIELDS MAY PROVIDE SUBSTANTIALLY INCREASED **ACCURACY WITH RESPECT TO QUANTUM CHEMISTRY AT MM SPEEDS**

Hwang et al. (1994) <u>http://doi.org/10.1021/ja00085a036</u>

A NEW GENERATION OF QUANTUM MACHINE LEARNING (QML) POTENTIALS PROVIDE SIGNIFICANTLY MORE FLEXIBILITY IN FUNCTIONAL FORM, THOUGH AT MUCH GREATER COST

ANI family of quantum machine learning (QML) potentials

radial and angular features

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. http://doi.org/10.1039/c6sc05720a

deep neural network for each atom

excellent agreement with DFT

ISAYEV

HYBRID QML/MM POTENTIALS ARE A NEAR-TERM PRACTICAL APPROACH TO MORE ACCURATE MODELING FOR DRUG DISCOVERY

DOMINIC

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and **Chodera**. **preprint:** <u>https://doi.org/10.1101/2020.07.29.227959</u> **code:** <u>https://github.com/choderalab/qmlify</u>

many QML/MM formulations possible, including those that use QML for protein-ligand interactions

ISAYEV

WE CAN PERTURB MM FREE ENERGY CALCULATIONS TO QML/MM WITH AN EFFICIENT NONEQUILIBRIUM SCHEME

DOMINIC RUFA HANNAH BRUCE MACDONALD

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and **Chodera**. **preprint:** <u>https://doi.org/10.1101/2020.07.29.227959</u> **code:** <u>https://github.com/choderalab/qmlify</u>

WE CAN PERTURB MM FREE ENERGY CALCULATIONS TO QML/MM WITH AN EFFICIENT NONEQUILIBRIUM SCHEME

DOMINIC RUFA HANNAH BRUCE MACDONALD

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and **Chodera**. **preprint:** <u>https://doi.org/10.1101/2020.07.29.227959</u> **code:** <u>https://github.com/choderalab/qmlify</u>

 $\Delta\Delta G$ estimated with Bennett acceptance ratio (BAR)

UNMODIFIED QML/MM CAN CUT THE ERROR IN BINDING AFFINITIES IN HALF

MM (OPLS2.1 + CM1A-BCC charges) Missing torsions from LMP2/cc-pVTZ(-f) QM calculations SPC water

							Tyk2
	ΔG _{exp} / k	cal mol-1		ΔG_{exp} /	kcal mol ⁻¹	no. of compds	16
1		-9.54	9	\vdash	-9.56	binding affinity range (kcal/mol)	4.3
	1			, \(\nu\)	7	crystal structure	4GIH
2		-10.94	10	\leftarrow	-7.42	series ref	52,53
2	CN	0.00		٤	11 20	no. of perturbations	24
З	бн	-0.90	11		-11.20	MUE FEP	0.75 ± 0.11
4	$\vdash \lhd$	-11.31	12	$ \vdash $	-9.00	RMSE FEP	0.93 ± 0.12
5	⊢∘	-9.21	13	\mapsto	-9.70		
6	\vdash	-8.26	14	⊢∢	-11.70		
7	$\vdash \triangleleft$	-10.91	15	⊢ •	-9.78		
8	$\vdash \bigcirc$	-7.75	16	₩ NH	-10.53		
	1 2 3 4 5 6 7 8	$\Delta G_{exp} / k$ $1 \vdash 2$ $2 \vdash 0$ $3 \vdash 0$ $4 \vdash 0$ $5 \vdash 0$ $6 \vdash 0$ $7 \vdash 0$ $8 \vdash 0$	$\Delta G_{exp} / \text{kcal mol}^{-1}$ $1 \mid9.54$ $2 \mid10.94$ $3 \mid11.31$ $5 \mid9.21$ $6 \mid9.21$ $6 \mid8.26$ $7 \mid -10.91$ $8 \mid7.75$	$\Delta G_{exp} / kcal mol-1$ 1 $I9.54 = 9$ 2 $I10.94 = 10$ 3 $I11.31 = 12$ 5 $I11.31 = 12$ 5 $I11.31 = 12$ 13 6 $I11.31 = 13$ 14 7 $I10.91 = 15$ 8 $I7.75 = 16$	$\Delta G_{exp} / kcal mol^{-1} \qquad \Delta G_{exp} / 1 \qquad \qquad$	$\Delta G_{exp} / \text{ kcal mol}^{-1} \qquad \Delta G_{exp} / \text{ kcal mol}^{-1}$ $1 \vdash -9.54 \mid 9 -9.56$ $2 \vdash -0.10.94 10 -7.42$ $3 \vdash -0.11.31 12 -11.28$ $4 \vdash -1.1.31 12 -11.28$ $4 \vdash -1.1.31 12 -9.00$ $5 \vdash -0.9.21 13 -9.70$ $6 \vdash -8.26 14 -1.1.70$ $7 -10.91 15 -9.78$ $8 -7.75 16 -8.4$	$\Delta G_{exp} / kcal mol^{-1} \qquad \Delta G_{exp} / kcal mol^{-1} \qquad no. of compds$ $1 \vdash -9.54 \qquad 9 \qquad -9.56 \qquad binding affinity range (kcal/mol) crystal structure series ref no. of perturbations MUE FEP RMSE FEP 4 \vdash -11.31 \qquad 12 \qquad -9.00 \qquad RMSE FEP 6 \vdash -8.26 \qquad 14 \qquad -9.70 \qquad 15 \qquad -9.70 \qquad 15 \qquad -9.78 \qquad 8 \qquad -9.78 \qquad 8 \qquad -9.77 \qquad 16 \qquad -9.78 \qquad 16 \qquad -10.53 \qquad -10$

Fice energies are in units or knotatories per more.

Tyk2 benchmark system from Wang et al. JACS 137:2695, 2015 replica-exchange free energy calculations with solute tempering (FEP/REST) **MM** (OpenFF 1.0.0 "Parsley") AMBER14SB protein force field TIP3P; Joung and Cheatham ions **QML/MM** (OpenFF 1.0.0 + ANI2x) AMBER14SB protein force field TIP3P; Joung and Cheatham ions

replica-exchange free energy calculations with perses preprint: https://doi.org/10.1101/2020.07.29.227959 **code**: <u>https://github.com/choderalab/perses</u> https://github.com/choderalab/qmlify

WELL-BEHAVED QML POTENTIALS MAKE ALCHEMICAL FREE ENERGY CALCULATIONS EASY

Potentials are free of singularities, so **simple linear alchemical potentials** can robustly compute alchemical free energies

 $U(x;\lambda) = (1-\lambda)U_{\lambda=0}(x) + \lambda U_{\lambda=1}(x)$

Simple atomic restraints can be used to improve efficiency by preventing atoms from flying away

JOSH FASS

MARCUS WIEDER

preprint: <u>https://doi.org/10.1101/2020.10.24.353318</u> code: <u>https://github.com/choderalab/neutromeratio</u>

WELL-BEHAVED QML POTENTIALS MAKE ALCHEMICAL FREE ENERGY CALCULATIONS EASY

Potentials are free of singularities, so **simple linear alchemical potentials** can robustly compute alchemical free energies

 $U(x;\lambda) = (1-\lambda)U_{\lambda=0}(x) + \lambda U_{\lambda=1}(x)$

Simple atomic restraints can be used to improve efficiency by preventing atoms from flying away

JOSH FASS

MARCUS WIEDER

preprint: <u>https://doi.org/10.1101/2020.10.24.353318</u> code: <u>https://github.com/choderalab/neutromeratio</u>

TRAINING ON FREE ENERGY DIFFERENCES FOR FOR A TRAINING SET IMPROVES FREE ENERGY PREDICTIONS ON A TEST SET

train: 221 tautomer pairs validate: 57 tautomer pairs test: 72 tautomer pairs

MARCUS

preprint: <u>https://doi.org/10.1101/2020.10.24.353318</u> **code**: <u>https://github.com/choderalab/neutromeratio</u>

tautomer alchemical free energy difference prediction

PREDICTIVE MODELS THAT LEARN ARE AN ESSENTIAL PART OF AUTONOMOUS DESIGN FRAMEWORKS

ENUMERATE HYPOTHESES

> EVALUATE HYPOTHESES

EXIT CYCLE

PREPRINTS AND CODE

<u>gimlet</u>: graph convolutional networks for partial charge assignment preprint: https://arxiv.org/abs/1909.07903 **code**: <u>http://github.com/choderalab/gimlet</u>

espaloma: end-to-end differentiable assignment of force field parameters preprint: https://arxiv.org/abs/2010.01196 code: <u>https://github.com/choderalab/espaloma</u>

<u>amlify</u>: hybrid QML/MM alchemical free energy calculations for protein-ligand binding preprint: https://doi.org/10.1101/2020.07.29.227959 **code:** <u>https://github.com/choderalab/qmlify</u>

preprint: https://doi.org/10.1101/2020.10.24.353318 **code:** <u>https://github.com/choderalab/neutromeratio</u>

- neutromeratio: alchemical free energy calculations with fully QML potentials for tautomer ratio prediction

National Institutes STIFTUNG (CHARITÉ SCHRÖDINGER. of Health

Gerstner **PARKER INSTITUTE** for cancer immunotherapy FAMILY FOUNDATION

> Scientific Advisor: OpenEye, Foresite Labs All funding: <u>http://choderalab.org/funding</u>

(T)

CHODERA LAB

